En el transcurso de mis años de estudiante y de profesor universitario he conocido profesores universitarios que, con sólo tener una formación inicial en matemática, deciden formarse sin seguir algún posgrado.
Cargando, por favor espere...
La matemática es un constructo humano, constituido por un conjunto de sistemas formales. Siendo algo informales, llamaremos sistema formal a un conjunto de símbolos y reglas bien establecidas a través de axiomas, definiciones, teoremas, etc., inventados por los homos sapiens a lo largo de más de cinco mil años. La creación de estos sistemas formales se realiza con ideas que generan artefactos conceptuales ontológicamente neutros. Este artículo trata de la génesis y evolución de estas ideas, y que se han ido operativizando a través del tiempo. Desde el Siglo VI a.C., los gérmenes de este constructo humano fueron llamados matemática por los pitagóricos; sin embargo, ésta nace, así como la conocemos hoy, en el Siglo III a.C., en la antigua Grecia.
En los más de cinco siglos de historia se distinguen, a grandes rasgos, cuatro revoluciones, entendiendo como revolución un cambio epistémico en el hacer matemático que ha permitido un avance significativo en el desarrollo de la matemática. Teniendo en cuenta nuestra concepción filosófica de lo que es la matemática, se distinguen, a saber:
Primera revolución: La invención del primer sistema formal de la historia; esto ocurrió en el Siglo III a.C., con la obra de Euclides, Elementos. Nace la matemática, como la conocemos hoy, con el primer intento de hacerla universal y atemporal. Este sistema formal se produjo gracias a las ideas filosóficas de Aristóteles (Siglo IV a.C.), quien recomendaba que todo conocimiento matemático debería ser producido a través de axiomas o postulados, definiciones, teoremas, etc., siguiendo las leyes del pensamiento (principio de identidad, principio del tercio excluido, principio de no contradicción).
Segunda revolución: invención del cálculo diferencial e integral en el Siglo XVII trajo como consecuencia, la superación de las limitaciones filosóficas y técnicas de los Elementos. Esencialmenteos, Elementos es una obra purista y estática, todo su estudio tiene esa limitante filosófica, por considerar que el cambio y el movimiento no son susceptibles de estudio; aún más, se consideraba que contaminaban la pureza y belleza de la matemática. El cálculo diferencial e integral generó nuevas herramientas conceptuales y operatorias para resolver problemas de la naturaleza. Todo esto fue posible gracias al nacimiento del racionalismo, como escuela filosófica.
Tercera revolución: en el Siglo XIX se inicia un cambio epistemológico en la matemática, nacen nuevas herramientas y profundos conceptos en el hacer matemático. Como consecuencia de ello, nacen el álgebra abstracta (para superar algunos problemas no resueltos de la antigüedad) y la geometría no euclidiana (que produce una ruptura con la escuela kantiana, predominante en la época), se profundiza en los fundamentos filosóficos de la matemática. Se inicia el rigor en el trabajo matemático. Todo esto fue posible gracias al nacimiento del romanticismo, como escuela filosófica.
Cuarta revolución: en las primeras décadas del Siglo XX, nacen el formalismo y el estructuralismo en la matemática, que caracterizan a la matemática de hoy. Se estableció un hacer matemático muy potente que ha permitido el desarrollo matemático como ningún otro momento de su historia. Abrió la puerta a nuevos mundos de interpretación conceptual, entendiendo ahora que los axiomas son reglas de juego primarias (no necesariamente evidentes, como era el pensamiento aristotélico), inventadas sólo con el requisito de que no se contradigan entre ellas. El mundo matemático se expandió como nunca antes en su historia, hoy se investiga en matemática en casi todo el mundo.
Es importante mencionar que antes de la primera revolución matemática existía lo que hemos llamado protomatemática, es decir, rudimentos, hace 25 mil años (hueso de Ishango) y un desarrollo empírico en las antiguas culturas de Babilonia y Egipto; no existe evidencia de sistemas formales que permitan concebir un conocimiento universal y atemporal. Por lo tanto, no existían fórmulas o leyes generales, sólo se evidencian soluciones a problemas matemáticos particulares, muy ingeniosos, con una notación engorrosa y sin una sistematización del conocimiento matemático. Sin embargo, el desarrollo protomatemático de estas antiguas culturas fue la génesis para la creación del primer sistema formal, les hacía falta las ideas filosóficas de Aristóteles, para poder generar resultados universales y atemporales.
En el transcurso de mis años de estudiante y de profesor universitario he conocido profesores universitarios que, con sólo tener una formación inicial en matemática, deciden formarse sin seguir algún posgrado.
Esta corriente filosófica es en realidad muy antigua, la primera idea de vincular el conocimiento en general con la matemática.
Un matemático es un científico básico, su formación requiere muchos años de preparación académica.
La profesión de matemático es bastante desconocida para la mayoría de las personas, casi siempre se le asocia a la de profesor de matemática, cuando son actividades distintas.
Los procesos de abstracción propios de la matemática se empiezan a ver desde su génesis, desde la invención de los primeros números, las primeras formas geométricas y el primer sistema formal hace dos mil 300 años por los griegos.
Este cerebro racional, con millones de conexiones neuronales, es también emocional, e ilógico.
El método axiomático en la geometría es quizás el aporte más notable que ha dado la matemática a la humanidad.
La incursión de las herramientas tecnológicas en la enseñanza de la matemática lleva varias décadas.
A principios del Siglo XX se descubrieron tablillas de arcilla en Irak y papiros en Egipto que contenían problemas y soluciones con data de cinco mil a cuatro mil años.
Alguna vez Albert Einstein dijo: según el juicio de los más eminentes matemáticos en vida, Emmy Noether era la más importante inteligencia matemática creativa que ha nacido desde que comenzó la educación superior de las mujeres.
Matemático universal, capaz de conectar las ecuaciones diferenciales y el álgebra abstracta.
Félix Klein y su Programa Erlangen
No vamos a juzgar la vida privada de este gran científico, la reflexión es aprender a separar los logros científicos de una persona y sus debilidades humanas.
Albert Einstein es el físico más importante del Siglo XX, sus ideas profundas han revolucionado las bases de la física newtoniana, dejando estupefactos a los grandes físicos de su época.
Dios creó a los números es el titulo de una de las obras más importantes del gran científico y divulgador Stephen Hawking.
Mexicano necesitaría ganar 185 mil pesos al mes para comprar casa como la de Noroña
Hallan restos humanos en Tlalnepantla en Edomex
Anuncia FNERRR movilización cultural por albergues estudiantiles en Oaxaca
En Oaxaca, autopistas de 66 mil mdp que no sirven
A pesar de lluvias, la mayoría de los estados enfrenta una severa crisis hídrica
Con decreto, México frena importación de calzado
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador