Cargando, por favor espere...
La respuesta a la pregunta planteada está sujeta a lo que concebimos como realidad. El estatus ontológico de lo que conocemos como realidad es relativo, existe una realidad capturada por nuestros sentidos y una realidad inventada que sólo existe conceptualmente en la mente humana. En este último tipo de realidad se encuentran los objetos matemáticos, en particular los números reales.
Desde la época griega los números naturales han capturan lo plural y después de un proceso evolutivo de muchos siglos se terminó por capturar lo singular, así fue posible obtener el conjunto de números naturales que hoy día conocemos. Esta captura es conceptual, cognitiva, no es material, asociada instantáneamente a un símbolo. Según Charles Peirce (1839–1914) uno de los grandes filósofos olvidados en su época, pero que hoy día tiene una vigencia central para entender a la matemática contemporánea, afirmaba: “No tenemos ninguna capacidad de pensar sin signos”. Es por ello que los símbolos son esenciales en el trabajo matemático.
Los números naturales existen en una realidad conceptual, de igual manera que los números racionales; de ambos podemos afirmar que comparten dos características esenciales: son enumerables y no son continuos.
La primera obstrucción matemática conocida en la historia es el paso de los números racionales a los irracionales, una obstrucción que dejó de ser oscura hasta fines del Siglo XIX. Para los griegos, los números eran objetos para contar, ordenar o medir; nunca pudieron comprender exactamente a los irracionales, incluso los matemáticos del Siglo XIX sólo los concebían como símbolos dentro de una operatoria, mas no como números.
Podríamos preguntarnos ¿cómo sabemos que existen los números irracionales? La respuesta a esta conjetura nos conllevará a entender una de las ideas más brillantes del pensamiento matemático y que los matemáticos hasta el día de hoy trabajan a diario en su teoremización de la matemática, es decir: transformar lo discreto a lo continuo, pasar de lo local a lo global, de la unidad a lo múltiple, para luego intentar establecer el proceso inverso.
Para dar realidad a los números irracionales, éstos deberían cumplir alguna funcionalidad matemática, que en este caso es de rellenar o completar a los números racionales para transformarlos en un objeto continuo. ¿Cómo se hace este proceso? Existen varias maneras equivalentes de hacerlo, una de ellas es tomar una sucesión de números racionales y mostrar que convergen, a ese punto de convergencia lo llamaremos número irracional. En este trabajo matemático hay una idea de fondo que se repite constantemente: un despliegue de objetos conocidos (números racionales), para establecer un repliegue en un solo objeto (punto límite). Es incesante, en el trabajo matemático, establecer despliegue y repliegue de objetos, para pasar de lo discreto a lo continuo, esto en diferentes contextos.
El punto límite es una ruptura cognitiva, lo que llamaremos un obstáculo matemático, que sólo ha sido superado a través del formalismo con una definición precisa de convergencia, pero filosóficamente insuficiente, puesto que cuando queremos superar una ruptura cognitiva, los matemáticos lo solucionan formalizando, y haciendo fuertemente uso de la intuición humana.
En el Siglo VI a.C., el filósofo griego Anaximandro realizaba las primeras afirmaciones de los infinitesimales: “Ningún ser humano ha podido llegar a ver lo más pequeño de los más pequeño”. En el Siglo XIX, Charles Peirce afirmaba: “no tenemos ninguna concepción de lo absolutamente incognoscible”, con esta afirmación rechaza la idea del cartesianismo de pretender saber lo que no se puede saber. Lo incognoscible en este caso es el punto límite, es decir, el número irracional y, por lo tanto, el continuo en su totalidad es impensable. En esta idea transitan los objetos matemáticos, desde lo discreto (números naturales) hacia lo ideal (el continuo).
Los matemáticos han inventado una realidad en donde los números reales existen, asociados insolublemente al símbolo R o al objeto geométrico recta (que es una ficción humana que no existe en la naturaleza). Los números reales no existen en la naturaleza, ninguna medición física es un número irracional, ésta sólo existe en la mente humana, una mente que inventa incesantemente, crea realidades, algunas fácticas y otras mentales, pero todo o casi todo contribuye al desarrollo humano.
Como parte de un experimento, por primera vez la NASA transmitió a la Tierra un video de “ultra alta definición” de 15 segundos de un gatito llamado Taters.
El eclipse solar total será el próximo 8 de abril.
Thales de Mileto utilizó el razonamiento para establecer leyes generales; fue el primero en formular teoremas matemáticos como los conocemos hoy.
Para alcanzar independencia política se requiere independencia económica, y esto exige soberanía científica y tecnológica; pero a los países ricos conviene que los pobres no lo consigan.
Desde el inicio de la cuarta revolución matemática, en las primeras décadas del Siglo XX, el formalismo hilbertiano ha caracterizado el trabajo matemático hasta el día de hoy. Este paradigma histórico del formalismo se caracteriza por...
Los Cordyceps infectan insectos que son dominantes y suelen propagarse como plagas
El papel de la ciencia en el desarrollo social se piensa en sus aportaciones a la tecnología para elevar la productividad, generar riqueza, crecimiento económico y progreso.
“Un lugar como nosotros depende totalmente del ingreso de los visitantes, dependemos de que los visitantes hagan el pago de su boleto para vivir la experiencia", dijo el director general.
Cuando se habla de entrenamiento deportivo y su dosificación en los atletas, entran en juego diversas variantes que influirán en resultados ya sea positivos o negativos.
Hablar de la existencia de la realidad ha sido un problema filosófico muy discutido. En este contexto, qué tipo de realidad es un objeto matemático, es una pregunta que abordaremos en este artículo.
En la propuesta del Conacyt que ha circulado entre la comunidad, identificamos tres graves problemas: la confusión entre gobierno y Estado, la centralización de las decisiones y la falta de referencia al financiamiento estable.
El dilema de las redes sociales aborda el hecho de cómo el producto que las compañías “procesan” para lograr la obtención de fabulosas ganancias somos los mismos seres humanos.
Ota Benga fue un congoleño de 1.25 metros de alto que llegó en 1906 al zoológico de Nueva York. Fue vendido como esclavo y comprado por Samuel Verne, un antropólogo que viajaba para colectar “razas exóticas” para una feria en EE. UU.
Ayer, el Telescopio Espacial James Webb reveló la imagen más clara hasta la fecha del universo primitivo, que se remonta a 13 mil millones de años, dijo la NASA el lunes.
Hoy sabemos que forma parte de los números irracionales y que es un número algebraico, al ser solución de una ecuación algebraica.
Un gobierno sin política agropecuaria
Trump confirma que sí impondrá aranceles del 25% a productos mexicanos
UNAM prepara asesorías para migrantes en EE. UU. tras llegada de Trump
México presente en Foro Económico Mundial de Davos 2025
Desplazados de San Pedro El Alto, entre una crisis humanitaria y el desdén del gobernador
¡Arancel Vs Arancel! Trudeau promete contramedidas
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador