Cargando, por favor espere...

Eudoxo y el cálculo infinitesimal
El método obtenido por el discípulo de Platón dio nacimiento formal al cálculo infinitesimal e influyó significativamente en los matemáticos posteriores a Eudoxo.
Cargando...

Eudoxo de Cnido y Arquímedes de Siracusa son considerados los fundadores del cálculo infinitesimal, aunque los filósofos Heráclito, Demócrito, Leucipo y Aristóteles desempeñaron también un papel determinante en el desarrollo de esta rama de la matemática. Eudoxo fue quien resolvió formalmente la crisis matemática relacionada con las magnitudes inconmensurables. En la antigua Grecia se pensaba que todo podía ser medido con exactitud, pero cuando aparecieron los números irracionales como raíz de dos, obtenido de la diagonal de un cuadrado de lado uno, y raíz de cinco, obtenido de la diagonal de un rectángulo de lados uno y dos, los matemáticos observaron que tales diagonales no se podían medir por una unidad común; además no podían expresarse como la razón de dos números enteros. Comenzaron a cuestionarse cómo era posible no poder expresar esos números irracionales como razón de dos números enteros, si eran obtenidos de los mismos números como catetos del cuadrado o del rectángulo. Aquí es donde aparece el genio de Cnido, quien resolvió de manera brillante y rigurosa esta crisis mediante su Teoría de Proporción, recuperada en el Libro V de los Elementos de Euclides de Alejandría.

El astrónomo y matemático de la antigua Grecia planteó que una magnitud, a diferencia de los números que son discretos, es continua. Y definió la proporción como la razón entre dos magnitudes, independientemente si eran conmensurables o no. Este razonamiento permitió a Eudoxo crear su método exhaustivo, que vino a resolver problemas relacionados con ángulos, segmentos, áreas y volúmenes que variaban de manera continua y que son también magnitudes. El método de agotamiento, llamado también así, que sirve para hallar áreas de figuras no rectilíneas como círculos, parábolas, conos, elipses, etc., lo obtuvo Eudoxo de la ley propuesta por su contemporáneo Aristóteles, la cual sostiene que “toda magnitud finita puede ser agotada mediante la sustracción de una cantidad determinada”,  aunque reformulada por Euclides, queda como como sigue: “Dadas dos magnitudes desiguales, si se quita de la mayor una (magnitud) mayor que su mitad y de la que queda, una magnitud mayor que su mitad y así sucesivamente, quedará una magnitud que será menor que la magnitud menor dada” (Elementos de Euclides, Libro X, Proposición 1). 

Usando esta proposición, Eudoxo usó figuras inscritas más simples como el triángulo, el cuadrado, los polígonos o poliedros para acercarse tanto como se quería al área del círculo de radio uno, y volúmenes de pirámides y conos. Para aproximarse al área del círculo, Eudoxo inscribió en él un polígono regular y calculó el área de cada polígono conforme iba incrementando sus lados. Comenzó con un cuadrado, cuya diagonal pasaba por el centro del círculo y después le agregó más lados, y fue determinando el área de cada una de estas figuras geométricas. Con las técnicas básicas de las matemáticas que usamos hoy, es posible notar inmediatamente que el área del cuadrado es dos, muy alejado, desde luego, del valor del número irracional; pero si el polígono inscrito tiene lados 6, 8, 10, 12, 14 hasta 200, por ejemplo, las áreas correspondientes serían respectivamente 2.598, 2.828, 2.939, 3, 3.037 y 3.141. Es claro que si continuamos incrementando los lados del polígono, éste va tomando la figura del círculo, es decir, incrementado los lados del polígono un número suficientemente grande, hasta el infinito, obtendríamos, por ejemplo, el valor de π.

Con el mismo método, Eudoxo demostró formalmente que el volumen de un cono es la tercera parte del de un cilindro y el de una pirámide, una tercera parte del de un prisma, pero con una condición: que todos tuvieran una misma base y altura igual.

El método obtenido por el discípulo de Platón dio nacimiento formal al cálculo infinitesimal e influyó significativamente en los matemáticos posteriores a Eudoxo, particularmente en Arquímedes de Siracusa, quien no solo aplicó dicho método, sino que agregó uno más: el método de reducción al absurdo, que consolidó la obtención del área de las figuras curvilíneas. Por el ejemplo, Arquímedes no se limitó a inscribir polígonos en el círculo de radio uno, sino también a circunscribirlos. Fue así como demostró, por medio del método de reducción al absurdo, que el área de ambos polígonos coincide. Así fue como se cimentaron las bases del cálculo infinitesimal.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

Los ejemplos más conocidos son los invernaderos, pero no son los únicos, existen también las casas sombra, los microtúneles, los túneles y otras estructuras utilizadas dependiendo del cultivo y la región climática.

Un tema que ha inquietado al hombre desde hace mucho tiempo es el del cálculo de áreas de terrenos accidentados para el cultivo.

El arribo de la mariposa constituye uno de los mayores atractivos turísticos de la entidad, el cual genera empleo y recursos económicos.

Los genes son los responsables de la conformación del genotipo

La deficiencia o error no está en el modelo matemático que se está usando, sino en la metodología implementada, en la recopilación de información y en los cálculos aritméticos.

El informe #ChatarraInfluencer revela que a nivel mundial, la industria de comida aumentó 58% su gasto en redes sociales para promocionar su mercancía.

Las consecuencias de la desatención del programa de vacunación infantil ya se están manifestando, pues hay rebrotes de Sarampión y Tuberculosis.

El tren estará atravesando el segundo pulmón forestal de América Latina: la selva maya. Fragmenta el hábitat y además viola los derechos de todas las comunidades indígenas que viven en la zona, entre otras graves consecuencias.

Toda investigación no es necesariamente científica, a veces se confunde con investigación tecnológica, o peor, con informes técnicos. Aclararemos estas confusiones en este artículo.

Los especialistas indican que en todo el país se detectan alrededor de 195 mil casos de cáncer al año, los cuales tienen una tasa de mortalidad del 46%.

Además de generar beneficios importantes para los suelos, la materia orgánica contribuye al amortiguamiento de agentes contaminantes. Sin embargo, las actividades humanas han provocado que en el 42% de nuestro territorio los suelos estén casi inservibles.

México, país extraordinariamente rico en diversidad biológica, alberga formaciones importantes de microbialitos

Las muertes por sobredosis de fentanilo alcanzaron otro récord en EE. UU. En sólo un año (2021-2022) casi 109 mil personas perdieron la vida por consumir esta sustancia.

Actualmente, diferentes grupos de científicos alrededor del mundo trabajan en la búsqueda y el desarrollo de tratamientos para combatir el Covid-19; el reto es que éstos sean eficaces contra las variantes actuales y futuras.

“Estamos ante la presencia del gobierno que intenta ver como accidentes, lo que más bien han sido tragedias provocadas por la ausencia de mantenimiento”, denunció Andrés Atayde, presidente del PAN.