Cargando, por favor espere...

¿Por qué el conjunto vacío es un conjunto? (II de II)
En teoría, si inventamos un sistema formal del contenido de Don Quijote de La Mancha, lo matematizamos; por lo tanto, lo convertimos en un objeto matemático.
Cargando...

En general, los objetos matemáticos son ficciones o invenciones humanas que están sujetas o gobernadas por sistemas formales. En teoría, si inventamos un sistema formal del contenido de El Ingenioso Hidalgo Don Quijote de La Mancha, lo matematizamos; por lo tanto, lo convertimos en un objeto matemático. Esto explica, por ejemplo, la existencia de estudios que intentan matematizar la poesía.

El conjunto, como célula básica de casi todo el conocimiento matemático, es una ficción que solo es posible inventar dentro de un sistema formal que garantice la existencia de ellos; por ejemplo, el sistema axiomático de Zermelo Franckel. Aquí hay que aclarar que existen versiones en las que el conjunto vacío se crea mediante un axioma (generando un conflicto con el discurso matemático escolar de pluralidad).

Debo manifestar que este axioma no me satisface, prefiero aceptar como axioma la existencia del conjunto inductivo (ver mi libro: Una axiomatización de la Teoría de Conjuntos), que resulta más plausible y no genera ruptura cognitiva. Con este axioma, y usando el axioma de especificación, se define un conjunto sin elementos (por ejemplo, con la propiedad , para luego probar que este conjunto está contenido en cualquier otro y, finalmente, probar que este conjunto es único, dando nacimiento a un objeto matemático que llamamos conjunto vacío.

Desde el punto de vista del conocimiento matemático formal, está plenamente justificada la existencia del conjunto vacío, el cual no necesita de la interpretación conceptual de pluralidad. Sin embargo, desde el discurso matemático escolar se reconoce a la pluralidad como característica esencial de los conjuntos, causando una ruptura cognitiva en los jóvenes. Es importante mencionar que la transmisión del conocimiento matemático no necesariamente es isovalente con el discurso matemático escolar, por razones pedagógicas y de madurez matemática de los jóvenes. Esto es razonablemente comprensible, puesto que hasta George Cantor, considerado el padre de la Teoría de Conjuntos decía: “Entendemos por conjunto cualquier reunión de un todo M de determinados objetos bien distinguidos m de nuestra intuición o nuestro pensamiento”. Esta idea la vemos reflejada en la obra Elementos de Euclides (S. III. a.C.), pasando por Bernard Bolzano, Bernhard Riemann y de otros connotados matemáticos. Incluso ellos no concebían un conjunto sin elementos. La concepción formal del conjunto vacío es obra de los formalistas, para construir al cero como número natural, además de darle sentido a algunas construcciones matemáticas que no poseen elementos, por ejemplo, el conjunto solución de algunas ecuaciones.

Para el formalista (por lo menos para Hilbert) la pertenencia es también una relación entre dos conjuntos, sin definición precisa, en la que no interviene la intuición típica del discurso matemático escolar, todo debe reducirse a un modelo formal, donde interesan las propiedades de esta relación y no su interpretación intuitiva. Para Hilbert, un libro de geometría no debería contener algún gráfico, esa misma escuela formal siguió el grupo Bourbaki, es cuestión de ver sus libros, por ejemplo, Dieudonne, para observar que no existen gráficos o dibujos, a lo más un esquema que no forma parte del contenido, todo el fundamento solo se basa en el sistema formal adoptado. Por supuesto que el discurso matemático escolar hace fuertemente uso de la intuición y todo elemento (dibujos, gráficos, tecnología etc.) pedagógico para el buen entendimiento de las técnicas matemáticas.

Es oportuno mencionar que no compartimos esta visión hilbertiana; desde el trabajo matemático y de la creación matemática, estos pictogramas son esenciales para las interpretaciones conceptuales de los mismos, sin ellos es probable no se pudieran visualizar muchas conexiones o generar nuevos objetos matemáticos. Además, el formalismo no da cuenta de lo dinámico de los objetos matemáticos, su plasticidad, su adaptabilidad y su estratificación dentro de un continuo temporal, es por ello que hablamos de un Ficcionismo Formal de Tránsito.

Finalmente, desde el formalismo matemático, la respuesta a ¿por qué el conjunto vacío es un conjunto? depende del sistema formal adoptado: se decreta su existencia por medio de un axioma específico; la otra opción sería, por medio de aceptar otro axioma (por ejemplo, el axioma del conjunto inductivo) demostrar que existe como conjunto. Por supuesto que desde el punto de vista filosófico es cuestionable, desde la mera existencia de los axiomas para crear objetos matemáticos y así construir esta ciencia. Sin embargo, desde el discurso matemático escolar, no hay respuesta, o su posible respuesta es contradictoria. Debemos entender que son dos mundos distintos, el matemático por un lado y el pedagógico por otro, el problema está en la transposición didáctica del objeto conjunto vacío. No siempre lo que se enseña en la escuela es exactamente igual al conocimiento matemático.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

Otras mujeres matemáticas también fueron importantes en la antigua Grecia; por ejemplo Aspacia de Alejandría (470-410 a. C.), pareja de Pericles.

La ANEPPMAC realizó en la UAG un evento deportivo, cultural y científico en el que alumnos de la Escuela Antonio Caso Zapopan consiguieron primeros lugares por sus proyectos.

El desarrollo de la investigación matemática ha sido tan espectacular, que abarcar todo el conocimiento actual de la matemática se ha vuelto imposible para cualquier ser humano.

El desarrollo de la matemática en la actualidad es esencialmente influenciado por la escuela formalista, propuesta por uno de los últimos universalistas de la matemática, el alemán David Hilbert.

Hace un par de años tuve dolor muscular, cansancio, fiebre y malestar general; por los síntomas, pensé que era Covid-19; pero tras varias pruebas, el diagnóstico final fue dengue.

En el ámbito de la astronomía, Galileo no solo confirmó que la Tierra se movía en torno al Sol y se burló de los inquisidores del Santo Oficio.

Urge tomar medidas para incrementar la cobertura; de lo contrario, rebrotes de sarampión, tuberculosis, difteria, poliomelitis, tétanos, rotavirus, rubeola, influenza, entre otras, pueden minar o acabar con la vida de miles de niños.

Mirar directamente al Sol durante un eclipse puede causar daños irreversibles en la retina, incluso sin sentir dolor; como sucedió en 1991.

“El paciente podrá hacer llamadas telefónicas, manejar una computadora o comunicarse sin la necesidad de mover sus propios músculos, que actualmente están comprometidos", afirmó el multimillonario Elon Musk.

“Aproximadamente el 70 por ciento de los cinco mil 200 millones de hectáreas de tierras secas que se utilizan en agricultura o ganadería está degradada y amenazada por la desertificación”.

"Sólo siete países africanos (de 54) tienen una posibilitad de conseguir el objetivo", declaró Matshidiso Moeti, directora de la OMS para África, en una rueda de prensa en línea.

Charles convence a su hija de que acepte los títulos al portador de una empresa “fantasma”, quien está controlada por Mossack y Fonseca

El sistema CRISPR/Cas9 es considerado como el método más simple, versátil y preciso de manipulación genética.

El papel de la ciencia en el desarrollo social se piensa en sus aportaciones a la tecnología para elevar la productividad, generar riqueza, crecimiento económico y progreso.

Aunque amado por unos y odiado por otros, el huitlacoche tiene un papel relevante en la economía, gastronomía y en la ciencia.