Cargando, por favor espere...

¿Qué es la matemática filosófica? Parte I
El desarrollo de la investigación matemática ha sido tan espectacular, que abarcar todo el conocimiento actual de la matemática se ha vuelto imposible para cualquier ser humano.
Cargando...

El desarrollo del conocimiento humano siempre ha estado influenciado por las corrientes de pensamiento filosófico, el conocimiento matemático no ha sido la excepción. Incluso desde los inicios del pensamiento filosófico (VI a.C.), también se encuentra asociada al pensamiento matemático, por ejemplo, la concepción pitagórica de número. Fue Aristóteles quien estableció la primera epistemología matemática, estableciendo las definiciones, axiomas, postulados, teoremas etc., como elementos necesarios en el trabajo matemático, dando origen a la primera revolución matemática, en el año 300 a.C. con los Elementos de Euclides.

Por razones filosóficas el desarrollo matemático griego tuvo un carácter estático e idealizado, sin dar cuenta de los fenómenos dinámicos de la naturaleza. La corriente filosófica del Racionalismo en el Siglo XVII trajo como consecuencia una segunda revolución matemática, iniciada por René Descartes y luego continuada por Isaac Newton y Leibniz, generando herramientas para el estudio dinámico vinculado a fenómenos físicos. Este proceso en la era de la Ilustración, en los siglos XVII y XVIII, fue impulsor de una matemática asociada a la solución de problemas reales, pero este gran desarrollo se fue agotando, fue necesario que a mediados del Siglo XIX se crearan nuevas herramientas matemáticas y nuevos mundos geométricos, así nace la tercera revolución matemática con las ideas de Bernard Riemann, Evaristo Galois, Nicolai Lobachevski, etc. La corriente filosófica del romanticismo influyó para desarrollar una matemática más teórica, por el puro honor del espíritu humano, sentando las bases del análisis matemático, el álgebra abstracta, la geometría diferencial, la topología, los espacios abstractos, etc. Sin embargo, un poco de rigurosidad hacía falta, aparecen a principios del Siglo XX algunas paradojas, fue necesario una profunda revisión de los fundamentos de la matemática, con base en la naciente teoría de conjuntos. Resurgen nuevas corrientes de pensamiento filosófico: el logicismo, el intuicionismo y el formalismo. Estas escuelas comúnmente son llamadas corrientes clásicas de la filosofía de la matemática. 

Esta batalla de pensamiento finalmente fue ganada por el formalismo de David Hilbert, constituyendo la cuarta revolución matemática, estableciendo una nueva epistemología matemática, concretamente: establecer un conocimiento sin bases filosóficas e históricas, sólo basada en establecer términos no definidos y axiomas como reglas de juego iniciales (no necesariamente evidentes) coherentes y consistentes, para luego continuar un proceso hipotético deductivo. Se puede decir que esta corriente, hoy llamada paradigma formalista, en la actualidad se halla presente en casi todos los matemáticos.

Como consecuencia de ello, el desarrollo de la investigación matemática ha sido espectacular y sin precedentes en la historia de esta ciencia; sin embargo, también ha causado una crisis en la enseñanza y aprendizaje de esta disciplina. El desarrollo ha sido tan espectacular, que abarcar todo el conocimiento actual de la matemática se ha vuelto imposible para cualquier ser humano y, por lo tanto, filosofar sobre los problemas de la matemática contemporánea es también imposible. Es decir, la llamada filosofía de la matemática clásica ha quedado impotente para generar nuevos avances, nuevas soluciones a problemas filosóficos de la matemática. Esto se agudiza dado que, en general, los filósofos que se interesan por los problemas filosóficos de la matemática no poseen formación matemática o científica; por lo tanto, sus reflexiones están carentes de algo indispensable, a mi juicio, del hacer de un matemático, que finalmente es quien crea e inventa este conocimiento.

Además, la formación académica formalista de los matemáticos (en general sin formación histórica y filosófica en la disciplina), ha estructurado su cerebro para pensar de manera rigurosa y formal, sin interés mayor de preguntarse sobre temas fundamentales como: ¿qué es la matemática? ¿Qué es un objeto matemático? ¿Qué naturaleza tiene este objeto? ¿Qué es un conjunto? ¿Cuáles son las herramientas conceptuales que permean en el trabajo matemático en general? ¿Cuál es la concepción filosófica del análisis, álgebra abstracta o la geometría en la matemática contemporánea? ¿Qué conexiones hay que establecer y qué nuevas herramientas hay que inventar para hacer una contribución realmente importante en la matemática actual?, ¿Cuáles son los problemas realmente relevantes en su línea de investigación? ¿Se está caminando para solucionar problemas relevantes o se publica sólo por satisfacer a la industria académica?, etc. Se podrían seguir estableciendo más conjeturas filosóficas, que desde el formalismo matemático son imposibles de resolver.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

Se trata de una fábrica de generación de datos, cuyo propósito es ofrecer estos datos a las empresas que desarrollan modelos de Inteligencia Artificial .

La Nochebuena era una flor predilecta para los aztecas, zapotecas, zoques, chontales y totonacas.

"Al pueblo de los Emiratos Árabes Unidos, a las naciones árabes y musulmanas, anunciamos la llegada con éxito a la órbita de Marte. Alabado sea Dios".

“Un lugar como nosotros depende totalmente del ingreso de los visitantes, dependemos de que los visitantes hagan el pago de su boleto para vivir la experiencia", dijo el director general.

Charles convence a su hija de que acepte los títulos al portador de una empresa “fantasma”, quien está controlada por Mossack y Fonseca

¿Por qué las plantas generan frutos? Porque como todos los seres vivos, buscan perpetuarse en el mundo. El fruto es una adaptación exitosa de las plantas para lograr esta finalidad.

Investigadores, indican que hace dos millones de años los primeros humanos tenían la capacidad y la tecnología necesarias para explotar de forma continua una variedad de hábitats cambiantes.

Aunque las ideas iniciales fueron concebidas por Bernhard Riemann y Richard Dedekind, se reconoce que el matemático que consolidó y sentó las bases para la axiomatización de la teoría de conjuntos fue el ruso George Cantor.

La sonda Mars Express halló “inmensos” depósitos de 3.7 kilómetros de espesor, ubicados bajo el suelo del ecuador de Marte, estructuras que sugieren la presencia de hielo.

Mirar directamente al Sol durante un eclipse puede causar daños irreversibles en la retina, incluso sin sentir dolor; como sucedió en 1991.

“Para los mexicanos, el maíz está entrelazado con su vida, su historia y sus tradiciones; no es solo un cultivo, sino el centro de su identidad", Sin embargo, hoy el maíz no cubre la demanda nacional, entre otras deficiencias.

En recientes días hemos escuchado sobre la “nueva amenaza” que acecha las zonas costeras del Golfo de México, la superbacteria “carnívora” Vibro vilmificus; la mayoría de sus víctimas mortales fueron pacientes con problemas hepáticos.

El desarrollo de la matemática en la actualidad es esencialmente influenciado por la escuela formalista, propuesta por uno de los últimos universalistas de la matemática, el alemán David Hilbert.

Ramón Picarte siempre pensó que la matemática debería ser un aporte para sacar a las personas de la pobreza; con esa idea organizó e impulsó diferentes sociedades cooperativas de artesanos y trabajadores de Santiago.

"Sólo siete países africanos (de 54) tienen una posibilitad de conseguir el objetivo", declaró Matshidiso Moeti, directora de la OMS para África, en una rueda de prensa en línea.