Cargando, por favor espere...
Por razones filosóficas el desarrollo matemático griego tuvo un carácter estático e idealizado, sin dar cuenta de los fenómenos dinámicos de la naturaleza. La corriente filosófica del Racionalismo en el Siglo XVII trajo como consecuencia una segunda revolución matemática, iniciada por René Descartes y luego continuada por Isaac Newton y Leibniz, generando herramientas para el estudio dinámico vinculado a fenómenos físicos. Este proceso en la era de la Ilustración, en los siglos XVII y XVIII, fue impulsor de una matemática asociada a la solución de problemas reales, pero este gran desarrollo se fue agotando, fue necesario que a mediados del Siglo XIX se crearan nuevas herramientas matemáticas y nuevos mundos geométricos, así nace la tercera revolución matemática con las ideas de Bernard Riemann, Evaristo Galois, Nicolai Lobachevski, etc. La corriente filosófica del romanticismo influyó para desarrollar una matemática más teórica, por el puro honor del espíritu humano, sentando las bases del análisis matemático, el álgebra abstracta, la geometría diferencial, la topología, los espacios abstractos, etc. Sin embargo, un poco de rigurosidad hacía falta, aparecen a principios del Siglo XX algunas paradojas, fue necesario una profunda revisión de los fundamentos de la matemática, con base en la naciente teoría de conjuntos. Resurgen nuevas corrientes de pensamiento filosófico: el logicismo, el intuicionismo y el formalismo. Estas escuelas comúnmente son llamadas corrientes clásicas de la filosofía de la matemática.
Esta batalla de pensamiento finalmente fue ganada por el formalismo de David Hilbert, constituyendo la cuarta revolución matemática, estableciendo una nueva epistemología matemática, concretamente: establecer un conocimiento sin bases filosóficas e históricas, sólo basada en establecer términos no definidos y axiomas como reglas de juego iniciales (no necesariamente evidentes) coherentes y consistentes, para luego continuar un proceso hipotético deductivo. Se puede decir que esta corriente, hoy llamada paradigma formalista, en la actualidad se halla presente en casi todos los matemáticos.
Como consecuencia de ello, el desarrollo de la investigación matemática ha sido espectacular y sin precedentes en la historia de esta ciencia; sin embargo, también ha causado una crisis en la enseñanza y aprendizaje de esta disciplina. El desarrollo ha sido tan espectacular, que abarcar todo el conocimiento actual de la matemática se ha vuelto imposible para cualquier ser humano y, por lo tanto, filosofar sobre los problemas de la matemática contemporánea es también imposible. Es decir, la llamada filosofía de la matemática clásica ha quedado impotente para generar nuevos avances, nuevas soluciones a problemas filosóficos de la matemática. Esto se agudiza dado que, en general, los filósofos que se interesan por los problemas filosóficos de la matemática no poseen formación matemática o científica; por lo tanto, sus reflexiones están carentes de algo indispensable, a mi juicio, del hacer de un matemático, que finalmente es quien crea e inventa este conocimiento.
Además, la formación académica formalista de los matemáticos (en general sin formación histórica y filosófica en la disciplina), ha estructurado su cerebro para pensar de manera rigurosa y formal, sin interés mayor de preguntarse sobre temas fundamentales como: ¿qué es la matemática? ¿Qué es un objeto matemático? ¿Qué naturaleza tiene este objeto? ¿Qué es un conjunto? ¿Cuáles son las herramientas conceptuales que permean en el trabajo matemático en general? ¿Cuál es la concepción filosófica del análisis, álgebra abstracta o la geometría en la matemática contemporánea? ¿Qué conexiones hay que establecer y qué nuevas herramientas hay que inventar para hacer una contribución realmente importante en la matemática actual?, ¿Cuáles son los problemas realmente relevantes en su línea de investigación? ¿Se está caminando para solucionar problemas relevantes o se publica sólo por satisfacer a la industria académica?, etc. Se podrían seguir estableciendo más conjeturas filosóficas, que desde el formalismo matemático son imposibles de resolver.
Pocas son las mujeres que han obtenido frutos tan importantes en las matemáticas a la par de muchos hombres. Es el caso de Ada Lovelace, a ella se reconoce como la pionera de la programación de la máquina analítica.
Es la era del “dominio humano sobre los procesos biológicos, químicos y geológicos de la Tierra”.
La pobreza y la marginación social son la principal causa del incremento de enfermedades relacionadas con la nutrición.
El aporte matemático de Arthur Cayley es impresionante e innovador, sus ideas visionarias han contribuido a desarrollar la matemática moderna.
Este fenómeno se denomina tormenta geomagnética y sus efectos se manifiestan a manera de interrupciones en las comunicaciones por radio y satélite, además de cortes de energía en los casos más extremos.
México cerró su participación en el sexto lugar general de 55 naciones participantes.
“Aproximadamente el 70 por ciento de los cinco mil 200 millones de hectáreas de tierras secas que se utilizan en agricultura o ganadería está degradada y amenazada por la desertificación”.
Cuántas veces hemos tenido la duda de si tomar un medicamento alopático o un té para curar algún malestar o disminuir el síntoma de una enfermedad.
“Prohibir el fentanilo en la práctica es quitarle a los enfermos el derecho a vivir sin dolor, es retroceder varios años en la historia”, sostuvieron médicos y científicos ante la propuesta de AMLO de prohibir el fentanilo en la medicina.
Estableció formalmente la continuidad de la recta real, definiendo un número real por medio de un dispositivo llamado cortadura.
Paul Erdós colaboró con tantos matemáticos que dio origen al famoso “número de Erdós”.
Médico y matemático con profundas convicciones católicas, con salud frágil toda su vida, publicó varias obras entre las que se encuentra Sobre la determinación de las raíces en las ecuaciones numéricas de cualquier grado.
Para mejorar el rendimiento de los atletas, debemos contemplar en nuestro trabajo deportivo el desarrollo de los conceptos y habilidades que explico en este artículo.
El eclipse solar total será el próximo 8 de abril.
De todas las ciencias, probablemente es la matemática la que no tiene una definición precisa de su contenido.
Generación de imágenes por medio de IA gastó más de 216 millones litros de agua
Anuncian banquete cultural en la XXI edición de Espartaqueada
En la mira de Washington 29 narcotraficantes mexicanos
Crear imágenes por medio de IA pone en riesgo la privacidad del usuario
Respaldan iniciativa sobre ciberseguridad
Recorte de subsidios golpea al sector agrícola, educativo y social
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador