Cargando, por favor espere...

En busca del número π (segunda parte)
El desarrollo de la sociedad planteó nuevos retos que propiciaron la creación de nuevas herramientas, que ayudaron a encontrar el área exacta de un círculo de radio uno.
Cargando...

Los métodos por agotamiento y de reducción al absurdo, formulados por Eudoxo y Arquímedes, no fueron suficientes para encontrar el área exacta de un círculo de radio uno. Sin embargo, esos métodos sentaron la base del cálculo infinitesimal que vino después a resolver el problema del área del círculo y los demás problemas relacionados con áreas bajo la curva.

El cálculo infinitesimal impulsado por Cavalieri, Torricelli, Fermat, Descartes y formalizado después por Newton, Leibniz y Riemann, ayudó al hombre a demostrar que el área del círculo de radio uno era igual al número π.

La búsqueda de este número continuó en el siglo XVIII, cuando la noción del infinito estaba muy avanzada. Con la aparición del método analítico (síntesis de la geometría y el álgebra) en esa época, los cálculos obtenidos se expresaron mediante funciones trigonométricas en forma de series convergentes, productos infinitos y fracciones continuas. Estas formas, para expresar las soluciones ayudaron al hombre a obtener aproximaciones numéricas con un mayor número de decimales. Sin embargo, el área del círculo de radio uno seguía sin encontrarse, ya que el número de decimales aumentaba con cada nueva herramienta matemática inventada por el hombre. Además, la naturaleza del número π también era desconocida. No se sabía si era un número racional o irracional.

Sin embargo, los matemáticos que desarrollaron el cálculo infinitesimal, nunca perdieron la esperanza de encontrar el último dígito del área del círculo. Buscaron incansablemente escribir el valor de π como cociente de dos números, pero conforme mejoraban sus herramientas matemáticas, el valor decimal de π seguía en aumento.

El primer matemático que aportó una perspectiva analítica en la búsqueda del valor de π como cociente de dos números fue el inglés John Wallis (1616–1703). Con la teoría aritmética de los límites, calculó el área de un semicírculo obteniendo la expresión de productos infinitos: que si aumentamos tanto el numerador como el denominador, nos acercaremos al valor de π. William Brouncker, otro matemático contemporáneo de Wallis, expresó el valor  como una serie de fracciones continuas (para más detalle, véase el artículo el número y su historia, de Simon Reif Acherman, pág. 11). La aportación de Leibniz fue también valiosa: en 1674 expresó el valor de π como límite de series infinitas de la siguiente forma: , lo que lo llevó a obtener un mayor número de decimales.

El problema, sin embargo, siguió sin resolverse. No bastaba el método analítico para encontrar el valor exacto del área de un círculo de radio uno; era necesario un nuevo método. Ante este hecho, los matemáticos centraron su atención en series que convergieran mucho más rápido. En esta lista participaron activamente Euler, Machin, de Lagny, todos brillantes. Newton, quien usó la serie de una función trigonométrica, se aproximó al valor de π a 15 decimales. Por su parte, Euler encontró una relación entre el número π y el neperiano e: ; vendría después el matemático alemán, Johann Heinrich Lambert, a demostrar que ambos números eran irracionales, es decir, que ninguno de los dos puede ser solución de una ecuación de primer grado con coeficientes enteros. Este resultado guio a los matemáticos del siglo XIX a crear nuevos métodos. Por ejemplo, con la integral de Riemann (1826–1866), pudo encontrarse al número π como .

Pero los matemáticos no se conformaron con este resultado. En 1849, el francés Joseph Liouville demostró la existencia de números trascendentales, es decir, números que no eran solución de ninguna ecuación algebraica de cualquier grado con coeficientes enteros. Posteriormente, en 1882, el alemán Carl von Lindemann (1852–1939) demostró que, entre esos números trascendentales, se encontraba el número π.

El desarrollo de la sociedad planteó nuevos retos que propiciaron la creación de nuevas herramientas, que ayudaron a encontrar el área exacta de un círculo de radio uno. El cálculo infinitesimal de Riemann propició el encuentro del valor exacto de π y el descubrimiento de su naturaleza.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

Congestión nasal, dolor de cabeza, estornudos, fiebre baja, escalofríos… son algunos de los síntomas más comunes del resfriado y la gripe y, aunque todos hemos pasado alguna vez por este malestar, no todo el mundo presenta la misma inmunidad o defensas.

Alguna vez escuché decir que la matemática no es una ciencia al no someterse al método científico, pero en ciertos trabajos se ha exigido a los estudiantes utilizar el método científico, ¿cómo es posible? Aquí explico.

La gran pasión científica de Pierre Laplace era establecer matemáticamente la estabilidad de nuestro sistema solar; para ello, se propuso aplicar las leyes de la gravitación de Newton y explicar ciertas perturbaciones observadas en Saturno y Júpiter cuand

“Estamos cerca de crear lo que se llama oncovacunas, vacunas contra el cáncer y medicamentos inmunomoduladores de nueva generación", afirmó el presidente de Rusia, Vladimir Putin.

Como resultado de la fiscalización que hizo la ASF al Sistema Nacional de Investigadores del CONACYT; se detectaron inconsistencias por casi 20 millones de pesos.

Para describir el comportamiento de los fenómenos físicos, biológicos, químicos, sociales o económicos, el hombre recurre, en la mayoría de los casos, a modelos matemáticos para ayudarse a resolver dos tipos de problemas.

Las cícadas son plantas únicas, sobrevivientes de casi 280 millones de años, compartieron espacio y tiempo con los dinosaurios y se consideran fósiles vivientes.

Venus, Saturno y Mercurio son los planetas que se distinguirán a simple vista.

Actualmente, diferentes grupos de científicos alrededor del mundo trabajan en la búsqueda y el desarrollo de tratamientos para combatir el Covid-19; el reto es que éstos sean eficaces contra las variantes actuales y futuras.

La naturaleza es compleja y se manifiesta de muchas formas. Uno de los instrumentos para estudiar dichas formas es la geometría

Apolonio de Perga, llamado "El Gran Geómetra", es uno de los tres grandes matemáticos de la antigüedad, mérito que comparte con Euclides y Arquímedes.

Tal como los procesadores de texto cambiaron la forma es la que se escribía, ahora estamos ante una nueva herramienta que, si se usa de manera correcta, revolucionaría la forma en la que escribimos.

¿Cómo es que estos genes pasaban de los padres a los hijos?

La intención es lograr un lente de material blando que logre un acercamiento, en un primer prototipo, de 32 por ciento con respecto a la visualización normal.

La deficiencia o error no está en el modelo matemático que se está usando, sino en la metodología implementada, en la recopilación de información y en los cálculos aritméticos.