Cargando, por favor espere...
Los métodos por agotamiento y de reducción al absurdo, formulados por Eudoxo y Arquímedes, no fueron suficientes para encontrar el área exacta de un círculo de radio uno. Sin embargo, esos métodos sentaron la base del cálculo infinitesimal que vino después a resolver el problema del área del círculo y los demás problemas relacionados con áreas bajo la curva.
El cálculo infinitesimal impulsado por Cavalieri, Torricelli, Fermat, Descartes y formalizado después por Newton, Leibniz y Riemann, ayudó al hombre a demostrar que el área del círculo de radio uno era igual al número π.
La búsqueda de este número continuó en el siglo XVIII, cuando la noción del infinito estaba muy avanzada. Con la aparición del método analítico (síntesis de la geometría y el álgebra) en esa época, los cálculos obtenidos se expresaron mediante funciones trigonométricas en forma de series convergentes, productos infinitos y fracciones continuas. Estas formas, para expresar las soluciones ayudaron al hombre a obtener aproximaciones numéricas con un mayor número de decimales. Sin embargo, el área del círculo de radio uno seguía sin encontrarse, ya que el número de decimales aumentaba con cada nueva herramienta matemática inventada por el hombre. Además, la naturaleza del número π también era desconocida. No se sabía si era un número racional o irracional.
Sin embargo, los matemáticos que desarrollaron el cálculo infinitesimal, nunca perdieron la esperanza de encontrar el último dígito del área del círculo. Buscaron incansablemente escribir el valor de π como cociente de dos números, pero conforme mejoraban sus herramientas matemáticas, el valor decimal de π seguía en aumento.
El primer matemático que aportó una perspectiva analítica en la búsqueda del valor de π como cociente de dos números fue el inglés John Wallis (1616–1703). Con la teoría aritmética de los límites, calculó el área de un semicírculo obteniendo la expresión de productos infinitos: que si aumentamos tanto el numerador como el denominador, nos acercaremos al valor de π. William Brouncker, otro matemático contemporáneo de Wallis, expresó el valor como una serie de fracciones continuas (para más detalle, véase el artículo el número y su historia, de Simon Reif Acherman, pág. 11). La aportación de Leibniz fue también valiosa: en 1674 expresó el valor de π como límite de series infinitas de la siguiente forma: , lo que lo llevó a obtener un mayor número de decimales.
El problema, sin embargo, siguió sin resolverse. No bastaba el método analítico para encontrar el valor exacto del área de un círculo de radio uno; era necesario un nuevo método. Ante este hecho, los matemáticos centraron su atención en series que convergieran mucho más rápido. En esta lista participaron activamente Euler, Machin, de Lagny, todos brillantes. Newton, quien usó la serie de una función trigonométrica, se aproximó al valor de π a 15 decimales. Por su parte, Euler encontró una relación entre el número π y el neperiano e: ; vendría después el matemático alemán, Johann Heinrich Lambert, a demostrar que ambos números eran irracionales, es decir, que ninguno de los dos puede ser solución de una ecuación de primer grado con coeficientes enteros. Este resultado guio a los matemáticos del siglo XIX a crear nuevos métodos. Por ejemplo, con la integral de Riemann (1826–1866), pudo encontrarse al número π como .
Pero los matemáticos no se conformaron con este resultado. En 1849, el francés Joseph Liouville demostró la existencia de números trascendentales, es decir, números que no eran solución de ninguna ecuación algebraica de cualquier grado con coeficientes enteros. Posteriormente, en 1882, el alemán Carl von Lindemann (1852–1939) demostró que, entre esos números trascendentales, se encontraba el número π.
El desarrollo de la sociedad planteó nuevos retos que propiciaron la creación de nuevas herramientas, que ayudaron a encontrar el área exacta de un círculo de radio uno. El cálculo infinitesimal de Riemann propició el encuentro del valor exacto de π y el descubrimiento de su naturaleza.
Estos datos se obtienen de las observaciones que realiza la Conagua en las estaciones climatológicas.
La bacteria P. luminiscens actuó sobre las heridas de los soldados como un como un antibiótico muy eficaz, lo que explica por qué las heridas fluorescentes sanaban más rápido que las heridas sin la bacteria fluorescente. Seguramente, esta bacteria salvó la vida de varios soldados, ¿cómo pasó?
El dilema de las redes sociales aborda el hecho de cómo el producto que las compañías “procesan” para lograr la obtención de fabulosas ganancias somos los mismos seres humanos.
El Siglo XXI es de la comunicación matemática, espero que en el futuro se sumen una mayor cantidad de divulgadores y difusores del conocimiento matemático, así la contribución para nuestra sociedad será enorme, entre sus muchos beneficios, porque mejorará la educación ciudadana.
Mientras el trabajo matemático tiene reglas, axiomas, y su libertad está en función de estar gobernado por sistemas formales; en el trabajo filosófico...
Un tema que ha inquietado al hombre desde hace mucho tiempo es el del cálculo de áreas de terrenos accidentados para el cultivo.
Investigadores del Instituto Tecnológico de Massachusetts demostraron la existencia de una "red lingüística universal" en hablantes de 45 lenguas, un hallazgo que podría revelar los procesos cognitivos base de todo el lenguaje hablado.
“Para los mexicanos, el maíz está entrelazado con su vida, su historia y sus tradiciones; no es solo un cultivo, sino el centro de su identidad", Sin embargo, hoy el maíz no cubre la demanda nacional, entre otras deficiencias.
El telescopio espacial Hubble descubrió la estrella más lejana hasta la fecha, una gigante supercaliente y superbrillante formada hace casi 13 mil millones de años.
El profesor Sullivan “es de los pocos matemáticos que, dentro de su mente, es capaz de ver mundos que son solo series de símbolos. Tiene una imagen mental de objetos mucho más abstractos que los objetos geométricos más cotidianos”.
“Un lugar como nosotros depende totalmente del ingreso de los visitantes, dependemos de que los visitantes hagan el pago de su boleto para vivir la experiencia", dijo el director general.
La palabra “hidroponia” deriva del griego hydro (agua) y ponos (trabajo), significa “trabajo en agua”.
El matemático sintió mucha inclinación por las humanidades y los idiomas, aprendió latín, griego, alemán, italiano y francés. Además, estudió por su cuenta y nunca obtuvo un título académico, aún así, fue reconocido a lo largo de su vida.
El desarrollo de la sociedad planteó nuevos retos que propiciaron la creación de nuevas herramientas, que ayudaron a encontrar el área exacta de un círculo de radio uno.
El estudio de Venus en la década de 1960 alertó a la comunidad científica sobre las consecuencias ambientales por el aumento de dióxido de carbono (CO2) en la atmósfera terrestre.
¡Otra vez! Sistema Cutzamala pierde millones de metros cúbicos de agua
Con plantón, Policías de Hidalgo exigen pago de aguinaldo
Política fiscal, ¿estabilidad macroeconómica o desarrollo social?
Motín en penal de Villahermosa desata caos y moviliza fuerzas de seguridad
Madres en resistencia inician huelga de hambre en Chiapas
Ropa y textiles importados enfrentarán aranceles de hasta 35%
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.