Cargando, por favor espere...
Los métodos por agotamiento y de reducción al absurdo, formulados por Eudoxo y Arquímedes, no fueron suficientes para encontrar el área exacta de un círculo de radio uno. Sin embargo, esos métodos sentaron la base del cálculo infinitesimal que vino después a resolver el problema del área del círculo y los demás problemas relacionados con áreas bajo la curva.
El cálculo infinitesimal impulsado por Cavalieri, Torricelli, Fermat, Descartes y formalizado después por Newton, Leibniz y Riemann, ayudó al hombre a demostrar que el área del círculo de radio uno era igual al número π.
La búsqueda de este número continuó en el siglo XVIII, cuando la noción del infinito estaba muy avanzada. Con la aparición del método analítico (síntesis de la geometría y el álgebra) en esa época, los cálculos obtenidos se expresaron mediante funciones trigonométricas en forma de series convergentes, productos infinitos y fracciones continuas. Estas formas, para expresar las soluciones ayudaron al hombre a obtener aproximaciones numéricas con un mayor número de decimales. Sin embargo, el área del círculo de radio uno seguía sin encontrarse, ya que el número de decimales aumentaba con cada nueva herramienta matemática inventada por el hombre. Además, la naturaleza del número π también era desconocida. No se sabía si era un número racional o irracional.
Sin embargo, los matemáticos que desarrollaron el cálculo infinitesimal, nunca perdieron la esperanza de encontrar el último dígito del área del círculo. Buscaron incansablemente escribir el valor de π como cociente de dos números, pero conforme mejoraban sus herramientas matemáticas, el valor decimal de π seguía en aumento.
El primer matemático que aportó una perspectiva analítica en la búsqueda del valor de π como cociente de dos números fue el inglés John Wallis (1616–1703). Con la teoría aritmética de los límites, calculó el área de un semicírculo obteniendo la expresión de productos infinitos: que si aumentamos tanto el numerador como el denominador, nos acercaremos al valor de π. William Brouncker, otro matemático contemporáneo de Wallis, expresó el valor como una serie de fracciones continuas (para más detalle, véase el artículo el número y su historia, de Simon Reif Acherman, pág. 11). La aportación de Leibniz fue también valiosa: en 1674 expresó el valor de π como límite de series infinitas de la siguiente forma: , lo que lo llevó a obtener un mayor número de decimales.
El problema, sin embargo, siguió sin resolverse. No bastaba el método analítico para encontrar el valor exacto del área de un círculo de radio uno; era necesario un nuevo método. Ante este hecho, los matemáticos centraron su atención en series que convergieran mucho más rápido. En esta lista participaron activamente Euler, Machin, de Lagny, todos brillantes. Newton, quien usó la serie de una función trigonométrica, se aproximó al valor de π a 15 decimales. Por su parte, Euler encontró una relación entre el número π y el neperiano e: ; vendría después el matemático alemán, Johann Heinrich Lambert, a demostrar que ambos números eran irracionales, es decir, que ninguno de los dos puede ser solución de una ecuación de primer grado con coeficientes enteros. Este resultado guio a los matemáticos del siglo XIX a crear nuevos métodos. Por ejemplo, con la integral de Riemann (1826–1866), pudo encontrarse al número π como .
Pero los matemáticos no se conformaron con este resultado. En 1849, el francés Joseph Liouville demostró la existencia de números trascendentales, es decir, números que no eran solución de ninguna ecuación algebraica de cualquier grado con coeficientes enteros. Posteriormente, en 1882, el alemán Carl von Lindemann (1852–1939) demostró que, entre esos números trascendentales, se encontraba el número π.
El desarrollo de la sociedad planteó nuevos retos que propiciaron la creación de nuevas herramientas, que ayudaron a encontrar el área exacta de un círculo de radio uno. El cálculo infinitesimal de Riemann propició el encuentro del valor exacto de π y el descubrimiento de su naturaleza.
La idea de aprender sin esfuerzo hace que el conocimiento adquirido en los menores sea volátil, superficial, en desmedro de su capacidad intelectual; y preocupa que cada año el nivel académico e intelectual de niños y jóvenes está decayendo a sitios alarmantes.
Marx añade: “… por más que la mayor fuente de suicidios corresponda principalmente a la miseria, los encontramos en todas las clases, entre los ociosos ricos tanto como entre artistas y políticos”.
La Tierra vivió el día más corto de su historia el pasado 29 de junio, cuando el planeta giró de forma completa en 1.59 milisegundos menos de lo normal.
En celebraciones como el maratón Guadalupe-Reyes, podemos encontrar diferentes elementos con historias científicas interesantes. Empecemos hablando de la nochebuena y el muérdago, dos plantas asociadas con la Navidad.
Astrónomos encontraron señal de vida en lo alto de la atmósfera de Venus: indicios que puede haber extraños microbios viviendo en las nubes cargadas de ácido sulfúrico.
Svante Pääbo logró secuenciar el ADN de los neandertales, la especie de homínido más emparentada con los seres humanos actuales, y que se extinguió hace 30 mil años.
Así, que el espacio en el que viajamos los humanos y las estrellas es curvo y no plano, como se había considerado en los dos mil años precedentes.
La palabra “hidroponia” deriva del griego hydro (agua) y ponos (trabajo), significa “trabajo en agua”.
Las buenas noticias disparadas desde Palacio Nacional, que pintan a un México próspero y “feliz”, parecen no corresponderse con las estadísticas del INEGI.
¿Y si existieran tatuajes que detecten cuándo y a qué le ponemos atención; o robots que “colaboran” con trabajadores? Estos avances tecnológicos relacionados con la neurociencia ya existen, pero ¿para qué y qué consecuencias trae a los millones de ciudadanos?
Las redes sociales como Facebook, buscan que los seres humanos busquen “ser aceptados”, “ser populares”, “ser famosos” pero sin tener actos valiosos para la sociedad.
La situación que enfrentan los tabasqueños es complicada y de alto riesgo. Urge implementar programas de desinfección.
El concepto tiempo asocia a los tres componentes estructurales del universo: materia, movimiento y espacio.
Se ha demostrado que aunque no es un alimento completo por sí solo, los productos comestibles a base de maíz aportan grandes beneficios para la salud humana.
Molina egresó como ingeniero químico por la UNAM en 1965 y posteriormente realizó estudios de posgrado en la Universidad de Friburgo, Alemania.
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.