Cargando, por favor espere...
Los métodos por agotamiento y de reducción al absurdo, formulados por Eudoxo y Arquímedes, no fueron suficientes para encontrar el área exacta de un círculo de radio uno. Sin embargo, esos métodos sentaron la base del cálculo infinitesimal que vino después a resolver el problema del área del círculo y los demás problemas relacionados con áreas bajo la curva.
El cálculo infinitesimal impulsado por Cavalieri, Torricelli, Fermat, Descartes y formalizado después por Newton, Leibniz y Riemann, ayudó al hombre a demostrar que el área del círculo de radio uno era igual al número π.
La búsqueda de este número continuó en el siglo XVIII, cuando la noción del infinito estaba muy avanzada. Con la aparición del método analítico (síntesis de la geometría y el álgebra) en esa época, los cálculos obtenidos se expresaron mediante funciones trigonométricas en forma de series convergentes, productos infinitos y fracciones continuas. Estas formas, para expresar las soluciones ayudaron al hombre a obtener aproximaciones numéricas con un mayor número de decimales. Sin embargo, el área del círculo de radio uno seguía sin encontrarse, ya que el número de decimales aumentaba con cada nueva herramienta matemática inventada por el hombre. Además, la naturaleza del número π también era desconocida. No se sabía si era un número racional o irracional.
Sin embargo, los matemáticos que desarrollaron el cálculo infinitesimal, nunca perdieron la esperanza de encontrar el último dígito del área del círculo. Buscaron incansablemente escribir el valor de π como cociente de dos números, pero conforme mejoraban sus herramientas matemáticas, el valor decimal de π seguía en aumento.
El primer matemático que aportó una perspectiva analítica en la búsqueda del valor de π como cociente de dos números fue el inglés John Wallis (1616–1703). Con la teoría aritmética de los límites, calculó el área de un semicírculo obteniendo la expresión de productos infinitos: que si aumentamos tanto el numerador como el denominador, nos acercaremos al valor de π. William Brouncker, otro matemático contemporáneo de Wallis, expresó el valor como una serie de fracciones continuas (para más detalle, véase el artículo el número y su historia, de Simon Reif Acherman, pág. 11). La aportación de Leibniz fue también valiosa: en 1674 expresó el valor de π como límite de series infinitas de la siguiente forma: , lo que lo llevó a obtener un mayor número de decimales.
El problema, sin embargo, siguió sin resolverse. No bastaba el método analítico para encontrar el valor exacto del área de un círculo de radio uno; era necesario un nuevo método. Ante este hecho, los matemáticos centraron su atención en series que convergieran mucho más rápido. En esta lista participaron activamente Euler, Machin, de Lagny, todos brillantes. Newton, quien usó la serie de una función trigonométrica, se aproximó al valor de π a 15 decimales. Por su parte, Euler encontró una relación entre el número π y el neperiano e: ; vendría después el matemático alemán, Johann Heinrich Lambert, a demostrar que ambos números eran irracionales, es decir, que ninguno de los dos puede ser solución de una ecuación de primer grado con coeficientes enteros. Este resultado guio a los matemáticos del siglo XIX a crear nuevos métodos. Por ejemplo, con la integral de Riemann (1826–1866), pudo encontrarse al número π como .
Pero los matemáticos no se conformaron con este resultado. En 1849, el francés Joseph Liouville demostró la existencia de números trascendentales, es decir, números que no eran solución de ninguna ecuación algebraica de cualquier grado con coeficientes enteros. Posteriormente, en 1882, el alemán Carl von Lindemann (1852–1939) demostró que, entre esos números trascendentales, se encontraba el número π.
El desarrollo de la sociedad planteó nuevos retos que propiciaron la creación de nuevas herramientas, que ayudaron a encontrar el área exacta de un círculo de radio uno. El cálculo infinitesimal de Riemann propició el encuentro del valor exacto de π y el descubrimiento de su naturaleza.
El estudio de Venus en la década de 1960 alertó a la comunidad científica sobre las consecuencias ambientales por el aumento de dióxido de carbono (CO2) en la atmósfera terrestre.
El arribo de la mariposa constituye uno de los mayores atractivos turísticos de la entidad, el cual genera empleo y recursos económicos.
"Sólo siete países africanos (de 54) tienen una posibilitad de conseguir el objetivo", declaró Matshidiso Moeti, directora de la OMS para África, en una rueda de prensa en línea.
El genio soviético fue quien lo hizo, en 1928, y, con éste, nació formalmente la probabilidad como la conocemos en la actualidad.
Aquí una síntesis de una cercana catástrofe ambiental y la urgencia de replantear nuestro enfoque económico para garantizar la supervivencia a largo plazo de la vida como la conocemos en nuestro planeta.
Astrónomos encontraron señal de vida en lo alto de la atmósfera de Venus: indicios que puede haber extraños microbios viviendo en las nubes cargadas de ácido sulfúrico.
Los trabajos que pueden contribuir a un incremento en el riesgo de sufrir demencia destacan los que están relacionados con funciones mecánicas o procesos automatizados.
Internet Explorer se retiró este 15 de junio de la competencia de navegadores luego de 27 años de haberse creado como parte del paquete Windows 95.
Una empresa estadounidense pretende transportar gas natural licuado (GNL) a Asia, pero las políticas ecológicas estadounidenses le imponen varias restricciones.
El costo estimado para adquirir este asistente autónomo oscila entre 20 mil y 30 mil dólares.
El sistema CRISPR/Cas9 es considerado como el método más simple, versátil y preciso de manipulación genética.
La tecnología hace posible que las ventas en línea lleguen a más personas, sin importar donde se encuentren; por lo que cada vez más usuarios de la red realizan compras a través de internet.
El hallazgo sucedió en mayo de 2022 por el paleontólogo Damien Boschetto, quien observó en el borde de un acantilado derrumbado un hueso expuesto.
La situación que enfrentan los tabasqueños es complicada y de alto riesgo. Urge implementar programas de desinfección.
¿Por qué las plantas generan frutos? Porque como todos los seres vivos, buscan perpetuarse en el mundo. El fruto es una adaptación exitosa de las plantas para lograr esta finalidad.
En celebración de su 26 Aniversario FNERRR exigirá alto a la represión de estudiantes oaxaqueños
Estudiantes de la UNAM mueren tras caer vehículo al canal Emisor Poniente
La guerra de occidente por minerales estratégicos
Banxico recorta tasa de interés a 8.50%
IMSS-Bienestar dará 27% menos consultas: México Evalúa
Maestros revientan “La Mañanera”: Sheinbaum da conferencia sin reporteros
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.