Cargando, por favor espere...

Tlaixaxiliztli
La irracionalidad de un número
La irracionalidad ayuda al hombre a comprender la continuidad y la discontinuidad de la materia.


En el mundo de los humanos hay quienes son irracionales y quienes son racionales. No se sabe si el conjunto de los primeros es mayor que el de los segundos, pero una cosa sí sabemos: el rumbo que está tomando la sociedad actual es tan irracional como la sociedad misma. Algo parecido sucede en la matemática, particularmente en el mundo de los números reales. Éstos, como nos enseñaron en la escuela secundaria, se dividen en racionales (los que pueden expresarse en fracciones) e irracionales (los que tienen una infinidad de decimales que no son periódicos).

Ambos términos, racional e irracional, son usados hoy con tanta facilidad, que no nos detenemos a pensar en su significado y su origen. Se sabe que el hombre antiguo comenzó a expresar la longitud de un segmento recto mediante fracciones, es decir, a través de magnitudes medibles o conmensurables. Pero pronto notó la existencia de segmentos que eran inconmensurables (es decir, segmentos no medibles). Uno de esos hombres fue el filósofo y matemático Pitágoras de Samos, quien planteó magníficamente la relación que existe entre la música y las matemáticas y su desempeño en el cultivo del saber. Este genio de la antigua Grecia descubrió la inconmensurabilidad de la diagonal de un cuadrado de lado uno, cuya longitud es igual a la raíz cuadrada de dos.

Hoy, este resultado es fácil de encontrar usando el famoso teorema de Pitágoras, pero en aquellos tiempos provocó una crisis entre la geometría y la aritmética; porque en esa época, ésta consistía solo en la teoría de la proporcionalidad, la cual solamente se aplicaba a magnitudes conmensurables. Fue así como nacieron los números racionales e irracionales, que ahora forman el conjunto de los números reales y que, de niños, nos enseñaron con los saltos de ranitas y sapitos.

El otro número, quizás más antiguo que el descubierto por Pitágoras, fue el número π, estudiado y desarrollado por la cultura sumeria, china y egipcia. Esta constante representó un avance en la construcción de pirámides y tumbas con bases circulares, esféricas y cilíndricas, objetos que requerían área y volumen.

La aparición del número π y la raíz cuadrada de dos originó una serie de números hermanos y amigos conocidos hoy como la raíz cuadrada de 3, 5, 7, 8, 10 11, etc., todos, desde luego, irracionales. Pero no solo eso, en la lista de los irracionales apareció también la constante e, reconocida y estudiada por el matemático escocés John Napier y divulgada después por el suizo Leonhard Euler, el matemático más prolífico de todos los tiempos.

El conjunto de los números arriba mencionados vino a completar la recta real. Es decir, la aparición de esos números fue necesaria para que la matemática tuviera una base sólida. Hoy, el estudiante no puede continuar sus estudios superiores sin pasar por los números reales, pues éstos son la base para comprender el análisis matemático y otras ramas de la matemática.

Pero llegar a la comprensión de la irracionalidad, no fue tarea fácil para el hombre. Tuvo que entender, primero, el concepto del infinito. Por ejemplo, en el Siglo XIX, el desarrollo de la matemática insinuaba que los números racionales e irracionales no tenían el mismo tamaño, aunque ambos fueran infinitos. Tuvo que venir Georg Cantor para comparar los tamaños de esos números con la siguiente ley: dos conjuntos M y N son equivalentes, si es posible ponerlos mediante una función mediante la cual se compruebe que a cada elemento de uno de ellos le corresponda uno y solo un elemento del otro. Con esta herramienta, Cantor demostró que el tamaño de los irracionales es más grande que el de los racionales y que es el único conjunto que completa a los racionales para formar la recta real. 

El resultado de Cantor sobre la irracionalidad de un número vino a enseñar al hombre que la naturaleza y el universo son más complejos de lo que parecen. Esa irracionalidad vino a demostrar que el tiempo es continuo y que el movimiento realizado por cualquier animal viviente en la naturaleza es continuo. En síntesis, la irracionalidad ayuda al hombre a comprender la continuidad y la discontinuidad de la materia.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

esptiben--977.jpg

Isaac Newton tenía una visión matemática y física del mundo al mismo tiempo que una concepción metafísica y alquimista de la naturaleza que lo hacen admirable entre sus contemporáneos y entre los científicos de hoy.

flor.jpg

La Nochebuena era una flor predilecta para los aztecas, zapotecas, zoques, chontales y totonacas.

romeo-936.jpg

Así, que el espacio en el que viajamos los humanos y las estrellas es curvo y no plano, como se había considerado en los dos mil años precedentes.

¿Existirán los números reales en la realidad?

Si existen o no está sujeto a lo que concebimos como realidad, misma que es relativa, existe una realidad capturada por nuestros sentidos y una realidad inventada que sólo existe conceptualmente en la mente humana.

phil.jpg

Solo es necesario que una fracción del hielo antártico se derrita para causar estragos en el nivel geológico en nuestro planeta. Un incremento del nivel del mar que supere los dos metros de altura pondría en peligro a 770 millones de personas.

Hipatia.jpg

Hipatia era tan famosa que se convirtió en consejera de políticos, eclesiásticos y aristócratas; sin embargo, esta influencia social y política finalmente causó su trágica muerte.

phil.jpg

El pasado tres de febrero, otro golpe brutal a la naturaleza tuvo lugar en Ohio, cuando un tren con sustancias peligrosas se descarriló y liberó gases venenosos; 14 de sus 150 vagones contenían 100 mil litros de cloruro de vinilo.

Sistemas metabólicos y su función en el ejercicio

Sabemos que la comida nos da energía para tener fuerzas para movernos de un lugar a otro, pero ¿cuántos sabemos cómo es que los músculos pueden funcionar con esta energía? Explico.

phili.jpg

Las aves han desempeñado varios papeles fundamentales a lo largo de la historia humana, desde ser fuente crucial en los ecosistemas, hasta servir como objeto de tranquilidad a la cansada y ajetreada alma de los trabajadores.

ciencia.jpg

Los ejemplos más conocidos son los invernaderos, pero no son los únicos, existen también las casas sombra, los microtúneles, los túneles y otras estructuras utilizadas dependiendo del cultivo y la región climática.

cien.jpg

Nuestras características físicas son resultado de la combinación de nuestros genes y entorno. Cada quien es distinto: tiene una combinación única de genes y ha sido moldeada por la realidad en que se desarrolla antes y después de nacer.

Función del sistema respiratorio durante el ejercicio físico

En este artículo sarás por qué es tan importante saber respirar bien cuando realizas algún tipo de ejercicio físico.

tla.jpg

En este artículo defenderemos, desde la dimensión antropológica de la matemática, una de las afirmaciones que han concitado discusiones entre matemáticos y filósofos.

curva.jpg

La deficiencia o error no está en el modelo matemático que se está usando, sino en la metodología implementada, en la recopilación de información y en los cálculos aritméticos.

sextante.jpg

Las redes sociales como Facebook, buscan que los seres humanos busquen “ser aceptados”, “ser populares”, “ser famosos” pero sin tener actos valiosos para la sociedad.