Cargando, por favor espere...

Tlaixaxiliztli
La irracionalidad de un número
La irracionalidad ayuda al hombre a comprender la continuidad y la discontinuidad de la materia.


En el mundo de los humanos hay quienes son irracionales y quienes son racionales. No se sabe si el conjunto de los primeros es mayor que el de los segundos, pero una cosa sí sabemos: el rumbo que está tomando la sociedad actual es tan irracional como la sociedad misma. Algo parecido sucede en la matemática, particularmente en el mundo de los números reales. Éstos, como nos enseñaron en la escuela secundaria, se dividen en racionales (los que pueden expresarse en fracciones) e irracionales (los que tienen una infinidad de decimales que no son periódicos).

Ambos términos, racional e irracional, son usados hoy con tanta facilidad, que no nos detenemos a pensar en su significado y su origen. Se sabe que el hombre antiguo comenzó a expresar la longitud de un segmento recto mediante fracciones, es decir, a través de magnitudes medibles o conmensurables. Pero pronto notó la existencia de segmentos que eran inconmensurables (es decir, segmentos no medibles). Uno de esos hombres fue el filósofo y matemático Pitágoras de Samos, quien planteó magníficamente la relación que existe entre la música y las matemáticas y su desempeño en el cultivo del saber. Este genio de la antigua Grecia descubrió la inconmensurabilidad de la diagonal de un cuadrado de lado uno, cuya longitud es igual a la raíz cuadrada de dos.

Hoy, este resultado es fácil de encontrar usando el famoso teorema de Pitágoras, pero en aquellos tiempos provocó una crisis entre la geometría y la aritmética; porque en esa época, ésta consistía solo en la teoría de la proporcionalidad, la cual solamente se aplicaba a magnitudes conmensurables. Fue así como nacieron los números racionales e irracionales, que ahora forman el conjunto de los números reales y que, de niños, nos enseñaron con los saltos de ranitas y sapitos.

El otro número, quizás más antiguo que el descubierto por Pitágoras, fue el número π, estudiado y desarrollado por la cultura sumeria, china y egipcia. Esta constante representó un avance en la construcción de pirámides y tumbas con bases circulares, esféricas y cilíndricas, objetos que requerían área y volumen.

La aparición del número π y la raíz cuadrada de dos originó una serie de números hermanos y amigos conocidos hoy como la raíz cuadrada de 3, 5, 7, 8, 10 11, etc., todos, desde luego, irracionales. Pero no solo eso, en la lista de los irracionales apareció también la constante e, reconocida y estudiada por el matemático escocés John Napier y divulgada después por el suizo Leonhard Euler, el matemático más prolífico de todos los tiempos.

El conjunto de los números arriba mencionados vino a completar la recta real. Es decir, la aparición de esos números fue necesaria para que la matemática tuviera una base sólida. Hoy, el estudiante no puede continuar sus estudios superiores sin pasar por los números reales, pues éstos son la base para comprender el análisis matemático y otras ramas de la matemática.

Pero llegar a la comprensión de la irracionalidad, no fue tarea fácil para el hombre. Tuvo que entender, primero, el concepto del infinito. Por ejemplo, en el Siglo XIX, el desarrollo de la matemática insinuaba que los números racionales e irracionales no tenían el mismo tamaño, aunque ambos fueran infinitos. Tuvo que venir Georg Cantor para comparar los tamaños de esos números con la siguiente ley: dos conjuntos M y N son equivalentes, si es posible ponerlos mediante una función mediante la cual se compruebe que a cada elemento de uno de ellos le corresponda uno y solo un elemento del otro. Con esta herramienta, Cantor demostró que el tamaño de los irracionales es más grande que el de los racionales y que es el único conjunto que completa a los racionales para formar la recta real. 

El resultado de Cantor sobre la irracionalidad de un número vino a enseñar al hombre que la naturaleza y el universo son más complejos de lo que parecen. Esa irracionalidad vino a demostrar que el tiempo es continuo y que el movimiento realizado por cualquier animal viviente en la naturaleza es continuo. En síntesis, la irracionalidad ayuda al hombre a comprender la continuidad y la discontinuidad de la materia.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

La forma en que pensamos y sentimos está determinada por la interacción entre el cuerpo y el cerebro.

Cuando se aborda el tema de la Inteligencia artificial (IA), a diferencia de algunas décadas atrás en el tiempo, ya no se aborda como ciencia-ficción; ahora la IA es una realidad.

La empresa mexicana ThumbSat diseñó y construyó los satélites en tamaño reducido (de 100 gramos cada uno aproximadamente).

La compañía tecnológica informó a medios especializados que los datos comprometidos incluyen información general, como nombres de usuarios y empresas, pero no contraseñas.

Los resultados mostraron un incremento de 38.3 a 42.6 por ciento los pacientes con afecciones intestinales y cerebrales en 2017 y 2023 respectivamente.

En su Segunda Carta de Relación dice que “la dicha provincia es redonda y está toda cercada de muy altas y ásperas sierras, y lo llano de ella tendrá en torno hasta setenta leguas”.

El vicepresidente brasileño, Geraldo Alckmin, visitará México a finales de agosto, acompañado por ministros y empresarios.

El estudio muestra que las diferencias en la superficie de la Luna están relacionadas con su interior y ha creado el mapa más preciso de su gravedad hasta ahora.

A lo largo de la historia, las dos guerras mundiales han dado lugar a los mayores ecocidios.

El estudio sugiere que los avances científicos están diseñados para monitorear a personas, lo que podría beneficiar a la industria de la vigilancia.

Enjambres de terremotos se incrementan a finales del verano, tras la filtración del agua de deshielo, y disminuyen en primavera.

El mini robot imita con precisión la anatomía de un insecto real.

El desarrollo de la sociedad ha engendrado diversas clases sociales.

Los investigadores calificaron este caso como “una de las mayores filtraciones de datos de la historia”.

Genera hasta 50 escenarios posibles con una antelación de hasta 15 días.