Cargando, por favor espere...

La irracionalidad de un número
La irracionalidad ayuda al hombre a comprender la continuidad y la discontinuidad de la materia.
Cargando...

En el mundo de los humanos hay quienes son irracionales y quienes son racionales. No se sabe si el conjunto de los primeros es mayor que el de los segundos, pero una cosa sí sabemos: el rumbo que está tomando la sociedad actual es tan irracional como la sociedad misma. Algo parecido sucede en la matemática, particularmente en el mundo de los números reales. Éstos, como nos enseñaron en la escuela secundaria, se dividen en racionales (los que pueden expresarse en fracciones) e irracionales (los que tienen una infinidad de decimales que no son periódicos).

Ambos términos, racional e irracional, son usados hoy con tanta facilidad, que no nos detenemos a pensar en su significado y su origen. Se sabe que el hombre antiguo comenzó a expresar la longitud de un segmento recto mediante fracciones, es decir, a través de magnitudes medibles o conmensurables. Pero pronto notó la existencia de segmentos que eran inconmensurables (es decir, segmentos no medibles). Uno de esos hombres fue el filósofo y matemático Pitágoras de Samos, quien planteó magníficamente la relación que existe entre la música y las matemáticas y su desempeño en el cultivo del saber. Este genio de la antigua Grecia descubrió la inconmensurabilidad de la diagonal de un cuadrado de lado uno, cuya longitud es igual a la raíz cuadrada de dos.

Hoy, este resultado es fácil de encontrar usando el famoso teorema de Pitágoras, pero en aquellos tiempos provocó una crisis entre la geometría y la aritmética; porque en esa época, ésta consistía solo en la teoría de la proporcionalidad, la cual solamente se aplicaba a magnitudes conmensurables. Fue así como nacieron los números racionales e irracionales, que ahora forman el conjunto de los números reales y que, de niños, nos enseñaron con los saltos de ranitas y sapitos.

El otro número, quizás más antiguo que el descubierto por Pitágoras, fue el número π, estudiado y desarrollado por la cultura sumeria, china y egipcia. Esta constante representó un avance en la construcción de pirámides y tumbas con bases circulares, esféricas y cilíndricas, objetos que requerían área y volumen.

La aparición del número π y la raíz cuadrada de dos originó una serie de números hermanos y amigos conocidos hoy como la raíz cuadrada de 3, 5, 7, 8, 10 11, etc., todos, desde luego, irracionales. Pero no solo eso, en la lista de los irracionales apareció también la constante e, reconocida y estudiada por el matemático escocés John Napier y divulgada después por el suizo Leonhard Euler, el matemático más prolífico de todos los tiempos.

El conjunto de los números arriba mencionados vino a completar la recta real. Es decir, la aparición de esos números fue necesaria para que la matemática tuviera una base sólida. Hoy, el estudiante no puede continuar sus estudios superiores sin pasar por los números reales, pues éstos son la base para comprender el análisis matemático y otras ramas de la matemática.

Pero llegar a la comprensión de la irracionalidad, no fue tarea fácil para el hombre. Tuvo que entender, primero, el concepto del infinito. Por ejemplo, en el Siglo XIX, el desarrollo de la matemática insinuaba que los números racionales e irracionales no tenían el mismo tamaño, aunque ambos fueran infinitos. Tuvo que venir Georg Cantor para comparar los tamaños de esos números con la siguiente ley: dos conjuntos M y N son equivalentes, si es posible ponerlos mediante una función mediante la cual se compruebe que a cada elemento de uno de ellos le corresponda uno y solo un elemento del otro. Con esta herramienta, Cantor demostró que el tamaño de los irracionales es más grande que el de los racionales y que es el único conjunto que completa a los racionales para formar la recta real. 

El resultado de Cantor sobre la irracionalidad de un número vino a enseñar al hombre que la naturaleza y el universo son más complejos de lo que parecen. Esa irracionalidad vino a demostrar que el tiempo es continuo y que el movimiento realizado por cualquier animal viviente en la naturaleza es continuo. En síntesis, la irracionalidad ayuda al hombre a comprender la continuidad y la discontinuidad de la materia.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

"Hemos visto con nuestros ojos y sentido bajo nuestros pies cómo muere el Ártico", explicó en declaraciones a la televisión pública ARD el jefe de la expedición, Markus Rex.

Cuando se habla de entrenamiento deportivo y su dosificación en los atletas, entran en juego diversas variantes que influirán en resultados ya sea positivos o negativos.

Un grupo de científicos reveló que el papiro narra la “vivificación de los gorriones”.

El concepto tiempo asocia a los tres componentes estructurales del universo: materia, movimiento y espacio.

Es posible crear una matemática filosófica desde el hacer de un matemático que sea realmente relevante y visionaria. Debe de ser una reflexión humanizante, pero a la vez esclarecedora del mundo de las ideas formales.

Para alcanzar independencia política se requiere independencia económica, y esto exige soberanía científica y tecnológica; pero a los países ricos conviene que los pobres no lo consigan.

AMLO olvida que el desarrollo económico de un país está directamente relacionado con las inversiones en la investigación y la producción de ciencia y tecnología.

El club de los matemáticos está constituido por un conjunto de seres humanos con alta formación matemática y capaces de inventar nuevos teoremas.

Científicos de la Universitat Pompeu Fabra de Barcelona descubrieron cómo frenar la producción de acné, al alterar de manera exitosa el genoma del 'Cutibacterium acnes', una bacteria cutánea relacionada con la aparición de la afección cutánea.

Las muertes por sobredosis de fentanilo alcanzaron otro récord en EE. UU. En sólo un año (2021-2022) casi 109 mil personas perdieron la vida por consumir esta sustancia.

“Es por demás evidente que la acusación que se ha lanzado desde la FGR es absurda e impropia de un país gobernado bajo principios mínimos de Estado de derecho".

Todos los avances de la humanidad tendrán que dejar de ser coágulos de trabajo con plusvalía contenida y tendrán que pasar a ser simplemente bienes y servicios.

 El resto de glaciares mexicanos desaparecerán en las próximas décadas si no se toma acciones para frenarlo, aseguraron los especialistas.

El cometa fue visible brevemente en los cielos del hemisferio norte.

Urge tomar medidas para incrementar la cobertura; de lo contrario, rebrotes de sarampión, tuberculosis, difteria, poliomelitis, tétanos, rotavirus, rubeola, influenza, entre otras, pueden minar o acabar con la vida de miles de niños.