Cargando, por favor espere...
La respuesta a la pregunta planteada está sujeta a lo que concebimos como realidad. El estatus ontológico de lo que conocemos como realidad es relativo, existe una realidad capturada por nuestros sentidos y una realidad inventada que sólo existe conceptualmente en la mente humana. En este último tipo de realidad se encuentran los objetos matemáticos, en particular los números reales.
Desde la época griega los números naturales han capturan lo plural y después de un proceso evolutivo de muchos siglos se terminó por capturar lo singular, así fue posible obtener el conjunto de números naturales que hoy día conocemos. Esta captura es conceptual, cognitiva, no es material, asociada instantáneamente a un símbolo. Según Charles Peirce (1839–1914) uno de los grandes filósofos olvidados en su época, pero que hoy día tiene una vigencia central para entender a la matemática contemporánea, afirmaba: “No tenemos ninguna capacidad de pensar sin signos”. Es por ello que los símbolos son esenciales en el trabajo matemático.
Los números naturales existen en una realidad conceptual, de igual manera que los números racionales; de ambos podemos afirmar que comparten dos características esenciales: son enumerables y no son continuos.
La primera obstrucción matemática conocida en la historia es el paso de los números racionales a los irracionales, una obstrucción que dejó de ser oscura hasta fines del Siglo XIX. Para los griegos, los números eran objetos para contar, ordenar o medir; nunca pudieron comprender exactamente a los irracionales, incluso los matemáticos del Siglo XIX sólo los concebían como símbolos dentro de una operatoria, mas no como números.
Podríamos preguntarnos ¿cómo sabemos que existen los números irracionales? La respuesta a esta conjetura nos conllevará a entender una de las ideas más brillantes del pensamiento matemático y que los matemáticos hasta el día de hoy trabajan a diario en su teoremización de la matemática, es decir: transformar lo discreto a lo continuo, pasar de lo local a lo global, de la unidad a lo múltiple, para luego intentar establecer el proceso inverso.
Para dar realidad a los números irracionales, éstos deberían cumplir alguna funcionalidad matemática, que en este caso es de rellenar o completar a los números racionales para transformarlos en un objeto continuo. ¿Cómo se hace este proceso? Existen varias maneras equivalentes de hacerlo, una de ellas es tomar una sucesión de números racionales y mostrar que convergen, a ese punto de convergencia lo llamaremos número irracional. En este trabajo matemático hay una idea de fondo que se repite constantemente: un despliegue de objetos conocidos (números racionales), para establecer un repliegue en un solo objeto (punto límite). Es incesante, en el trabajo matemático, establecer despliegue y repliegue de objetos, para pasar de lo discreto a lo continuo, esto en diferentes contextos.
El punto límite es una ruptura cognitiva, lo que llamaremos un obstáculo matemático, que sólo ha sido superado a través del formalismo con una definición precisa de convergencia, pero filosóficamente insuficiente, puesto que cuando queremos superar una ruptura cognitiva, los matemáticos lo solucionan formalizando, y haciendo fuertemente uso de la intuición humana.
En el Siglo VI a.C., el filósofo griego Anaximandro realizaba las primeras afirmaciones de los infinitesimales: “Ningún ser humano ha podido llegar a ver lo más pequeño de los más pequeño”. En el Siglo XIX, Charles Peirce afirmaba: “no tenemos ninguna concepción de lo absolutamente incognoscible”, con esta afirmación rechaza la idea del cartesianismo de pretender saber lo que no se puede saber. Lo incognoscible en este caso es el punto límite, es decir, el número irracional y, por lo tanto, el continuo en su totalidad es impensable. En esta idea transitan los objetos matemáticos, desde lo discreto (números naturales) hacia lo ideal (el continuo).
Los matemáticos han inventado una realidad en donde los números reales existen, asociados insolublemente al símbolo R o al objeto geométrico recta (que es una ficción humana que no existe en la naturaleza). Los números reales no existen en la naturaleza, ninguna medición física es un número irracional, ésta sólo existe en la mente humana, una mente que inventa incesantemente, crea realidades, algunas fácticas y otras mentales, pero todo o casi todo contribuye al desarrollo humano.
Científicos explican que el debilitamiento del campo magnético afecta principalmente la zona espacial sobre Brasil.
Invadiendo el mundo, es una cinta que exhibe con nitidez escenas racistas sobresalientes como la que provocó la muerte del afroamericano George Floyd en Minneapolis.
El Meteorito de Allende abrió “una ventana para entender el origen del Sistema Solar” y junto a otro célebre meteorito “mexicano” de hace 66 millones de años en el área submarina de Chicxulub, ha aportado importantes conocimientos científicos sobre la historia de la Tierra.
Uno de los grandes matemáticos con espíritu de poeta fue el inglés James Joseph Sylvester, quien fue dotado de una extraordinaria intuición matemática y de una gran sensibilidad poética, ya que logró conectar las ideas matemáticas con la poesía.
La MIA-F1 reconoce afectaciones de gran magnitud a los ecosistemas de los primeros tres tramos.
El pasado tres de febrero, otro golpe brutal a la naturaleza tuvo lugar en Ohio, cuando un tren con sustancias peligrosas se descarriló y liberó gases venenosos; 14 de sus 150 vagones contenían 100 mil litros de cloruro de vinilo.
Blade Runner no es una cinta más de ciencia ficción: es un filme que mueve a la reflexión.
Investigadores del Instituto Tecnológico de Massachusetts demostraron la existencia de una "red lingüística universal" en hablantes de 45 lenguas, un hallazgo que podría revelar los procesos cognitivos base de todo el lenguaje hablado.
¿Es posible encontrar la cuadratura de una figura geométrica? la respuesta en este texto. La cuadratura de una figura geométrica consiste en encontrar exactamente su área en un cuadrado.
En nuestros días, los científicos discuten con gran preocupación el posible aumento, en las futuras generaciones, de enfermedades o males derivados del efecto ambiental catastrófico más grande después de la época de las postguerras.
Los artrópodos fueron el grupo más abundante desde que la vida animal apareció en la Tierra
¿Cómo producir frutas y verduras sin químicos que dañen nuestra salud y la de las demás especies de seres vivos? Recientemente encontré el libro "Regénesis. Alimentar al mundo sin devorar el planeta", de George Monbiot.
Ante el actual embate del cambio climático, ¿cómo superará la humanidad dicha contradicción? ¿Mediante la competencia o la cooperación?
El profesor Godfrey Hardy fue muy famoso, entre otras aportaciones a la matemática, por su concepción ontológicamente neutra en la materia, que lo llevó a escribir uno de los textos más interesantes para entender el trabajo de un matemático.
¿Realmente son nocivas para el ecosistema? Un ambientalista dirá: “sí, porque desplazan especies nativas”. Sin embargo, ciertas necesidades se satisfacen mejor con especies exóticas que con nativas, por lo que es necesario asumir riesgos.
Congreso de la CDMX recibe el PEF 2025; habrá aumentos a las 16 alcaldías
Por derroche, en Guanajuato suspenden Fideicomiso
No desparece en el Congreso de la CDMX la moción suspensiva
Aumentarán impuestos para gasolina, refresco y cigarros; IEPS
Policías se enfrentan a comerciantes en villa navideña
Por bajos precios, limoneros tiran su producto antes que malbaratar su trabajo
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador