Cargando, por favor espere...

¿Existirán los números reales en la realidad?
Si existen o no está sujeto a lo que concebimos como realidad, misma que es relativa, existe una realidad capturada por nuestros sentidos y una realidad inventada que sólo existe conceptualmente en la mente humana.
Cargando...

La respuesta a la pregunta planteada está sujeta a lo que concebimos como realidad. El estatus ontológico de lo que conocemos como realidad es relativo, existe una realidad capturada por nuestros sentidos y una realidad inventada que sólo existe conceptualmente en la mente humana. En este último tipo de realidad se encuentran los objetos matemáticos, en particular los números reales.

Desde la época griega los números naturales han capturan lo plural y después de un proceso evolutivo de muchos siglos se terminó por capturar lo singular, así fue posible obtener el conjunto de números naturales que hoy día conocemos. Esta captura es conceptual, cognitiva, no es material, asociada instantáneamente a un símbolo. Según Charles Peirce (1839–1914) uno de los grandes filósofos olvidados en su época, pero que hoy día tiene una vigencia central para entender a la matemática contemporánea, afirmaba: “No tenemos ninguna capacidad de pensar sin signos”. Es por ello que los símbolos son esenciales en el trabajo matemático.

Los números naturales existen en una realidad conceptual, de igual manera que los números racionales; de ambos podemos afirmar que comparten dos características esenciales: son enumerables y no son continuos.

La primera obstrucción matemática conocida en la historia es el paso de los números racionales a los irracionales, una obstrucción que dejó de ser oscura hasta fines del Siglo XIX. Para los griegos, los números eran objetos para contar, ordenar o medir; nunca pudieron comprender exactamente a los irracionales, incluso los matemáticos del Siglo XIX sólo los concebían como símbolos dentro de una operatoria, mas no como números.

Podríamos preguntarnos ¿cómo sabemos que existen los números irracionales? La respuesta a esta conjetura nos conllevará a entender una de las ideas más brillantes del pensamiento matemático y que los matemáticos hasta el día de hoy trabajan a diario en su teoremización de la matemática, es decir: transformar lo discreto a lo continuo, pasar de lo local a lo global, de la unidad a lo múltiple, para luego intentar establecer el proceso inverso.

Para dar realidad a los números irracionales, éstos deberían cumplir alguna funcionalidad matemática, que en este caso es de rellenar o completar a los números racionales para transformarlos en un objeto continuo. ¿Cómo se hace este proceso? Existen varias maneras equivalentes de hacerlo, una de ellas es tomar una sucesión de números racionales y mostrar que convergen, a ese punto de convergencia lo llamaremos número irracional. En este trabajo matemático hay una idea de fondo que se repite constantemente: un despliegue de objetos conocidos (números racionales), para establecer un repliegue en un solo objeto (punto límite). Es incesante, en el trabajo matemático, establecer despliegue y repliegue de objetos, para pasar de lo discreto a lo continuo, esto en diferentes contextos.

El punto límite es una ruptura cognitiva, lo que llamaremos un obstáculo matemático, que sólo ha sido superado a través del formalismo con una definición precisa de convergencia, pero filosóficamente insuficiente, puesto que cuando queremos superar una ruptura cognitiva, los matemáticos lo solucionan formalizando, y haciendo fuertemente uso de la intuición humana.

En el Siglo VI a.C., el filósofo griego Anaximandro realizaba las primeras afirmaciones de los infinitesimales: “Ningún ser humano ha podido llegar a ver lo más pequeño de los más pequeño”. En el Siglo XIX, Charles Peirce afirmaba: “no tenemos ninguna concepción de lo absolutamente incognoscible”, con esta afirmación rechaza la idea del cartesianismo de pretender saber lo que no se puede saber. Lo incognoscible en este caso es el punto límite, es decir, el número irracional y, por lo tanto, el continuo en su totalidad es impensable. En esta idea transitan los objetos matemáticos, desde lo discreto (números naturales) hacia lo ideal (el continuo).

Los matemáticos han inventado una realidad en donde los números reales existen, asociados insolublemente al símbolo R o al objeto geométrico recta (que es una ficción humana que no existe en la naturaleza). Los números reales no existen en la naturaleza, ninguna medición física es un número irracional, ésta sólo existe en la mente humana, una mente que inventa incesantemente, crea realidades, algunas fácticas y otras mentales, pero todo o casi todo contribuye al desarrollo humano.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

En este artículo defenderemos, desde la dimensión antropológica de la matemática, una de las afirmaciones que han concitado discusiones entre matemáticos y filósofos.

Para que el deportista cumpla sus objetivos físicos debe considerar varias variables. Aquí explicamos la hipertrofia muscular, puesto que la población que realiza deporte casi siempre busca una buena imagen física.

El ser humano tiene la capacidad de obtener e interpretar la información que obtiene de su medio ambiente para generar una respuesta, en forma de movimiento.

El volcán Popocatépetl se formó hace 23 mil años sobre los restos de otros volcanes. Desde entonces presenta actividad de manera intermitente, Tras estar inactivo 67 años, "despertó" en 1994.

Esta red impulsará la creación de ciudades inteligentes y permitirá realizar cirugías a distancia

Un molar de al menos 130 mil años de antigüedad encontrado en una cueva de Laos, en el sureste asiático, podría ser clave para arrojar nueva luz sobre los denisovanos, especie poco conocida descubierta en 2010.

Cuando se habla de entrenamiento deportivo y su dosificación en los atletas, entran en juego diversas variantes que influirán en resultados ya sea positivos o negativos.

El genio soviético fue quien lo hizo, en 1928, y, con éste, nació formalmente la probabilidad como la conocemos en la actualidad.

El estudio muestra que las diferencias en la superficie de la Luna están relacionadas con su interior y ha creado el mapa más preciso de su gravedad hasta ahora.

Fenómeno que no se repetirá hasta el año 2040.

La filosofía no es un adorno, merece que se le reconozca su capacidad de estudio de la realidad, su utilidad en el más amplio sentido de la palabra, pues la humanidad la necesita para manifestarse como tal. Olvidar a la filosofía es condenarnos a las sombras...

El THC (presente en la marihuana y actúa sobre el sistema nervioso central) estimula la sobreproducción de dopamina, una hormona responsable del placer que se produce naturalmente ante acciones como comer o tener sexo.

“El pensamiento científico inventa conceptos implícitamente definidos mediante axiomas, postulados arbitrariamente, sin otra exigencia que la ausencia de contradicción", así se instauró en la matemática el paradigma que caracteriza hoy a la matemática.

Considerado de los grandes matemáticos del S. XVIII, su mente no era la de un geómetra, era esencialmente analista. Newton, Euler y D’ Alembert, reconocieron que sus métodos analíticos los habían ayudado a entender problemas matemáticos.

En matemática, los pitagóricos demostraron que: la suma de las medidas de los ángulos interiores de un triángulo es 180°.