Cargando, por favor espere...

Tlaixaxiliztli
¿Existirán los números reales en la realidad?
Si existen o no está sujeto a lo que concebimos como realidad, misma que es relativa, existe una realidad capturada por nuestros sentidos y una realidad inventada que sólo existe conceptualmente en la mente humana.


La respuesta a la pregunta planteada está sujeta a lo que concebimos como realidad. El estatus ontológico de lo que conocemos como realidad es relativo, existe una realidad capturada por nuestros sentidos y una realidad inventada que sólo existe conceptualmente en la mente humana. En este último tipo de realidad se encuentran los objetos matemáticos, en particular los números reales.

Desde la época griega los números naturales han capturan lo plural y después de un proceso evolutivo de muchos siglos se terminó por capturar lo singular, así fue posible obtener el conjunto de números naturales que hoy día conocemos. Esta captura es conceptual, cognitiva, no es material, asociada instantáneamente a un símbolo. Según Charles Peirce (1839–1914) uno de los grandes filósofos olvidados en su época, pero que hoy día tiene una vigencia central para entender a la matemática contemporánea, afirmaba: “No tenemos ninguna capacidad de pensar sin signos”. Es por ello que los símbolos son esenciales en el trabajo matemático.

Los números naturales existen en una realidad conceptual, de igual manera que los números racionales; de ambos podemos afirmar que comparten dos características esenciales: son enumerables y no son continuos.

La primera obstrucción matemática conocida en la historia es el paso de los números racionales a los irracionales, una obstrucción que dejó de ser oscura hasta fines del Siglo XIX. Para los griegos, los números eran objetos para contar, ordenar o medir; nunca pudieron comprender exactamente a los irracionales, incluso los matemáticos del Siglo XIX sólo los concebían como símbolos dentro de una operatoria, mas no como números.

Podríamos preguntarnos ¿cómo sabemos que existen los números irracionales? La respuesta a esta conjetura nos conllevará a entender una de las ideas más brillantes del pensamiento matemático y que los matemáticos hasta el día de hoy trabajan a diario en su teoremización de la matemática, es decir: transformar lo discreto a lo continuo, pasar de lo local a lo global, de la unidad a lo múltiple, para luego intentar establecer el proceso inverso.

Para dar realidad a los números irracionales, éstos deberían cumplir alguna funcionalidad matemática, que en este caso es de rellenar o completar a los números racionales para transformarlos en un objeto continuo. ¿Cómo se hace este proceso? Existen varias maneras equivalentes de hacerlo, una de ellas es tomar una sucesión de números racionales y mostrar que convergen, a ese punto de convergencia lo llamaremos número irracional. En este trabajo matemático hay una idea de fondo que se repite constantemente: un despliegue de objetos conocidos (números racionales), para establecer un repliegue en un solo objeto (punto límite). Es incesante, en el trabajo matemático, establecer despliegue y repliegue de objetos, para pasar de lo discreto a lo continuo, esto en diferentes contextos.

El punto límite es una ruptura cognitiva, lo que llamaremos un obstáculo matemático, que sólo ha sido superado a través del formalismo con una definición precisa de convergencia, pero filosóficamente insuficiente, puesto que cuando queremos superar una ruptura cognitiva, los matemáticos lo solucionan formalizando, y haciendo fuertemente uso de la intuición humana.

En el Siglo VI a.C., el filósofo griego Anaximandro realizaba las primeras afirmaciones de los infinitesimales: “Ningún ser humano ha podido llegar a ver lo más pequeño de los más pequeño”. En el Siglo XIX, Charles Peirce afirmaba: “no tenemos ninguna concepción de lo absolutamente incognoscible”, con esta afirmación rechaza la idea del cartesianismo de pretender saber lo que no se puede saber. Lo incognoscible en este caso es el punto límite, es decir, el número irracional y, por lo tanto, el continuo en su totalidad es impensable. En esta idea transitan los objetos matemáticos, desde lo discreto (números naturales) hacia lo ideal (el continuo).

Los matemáticos han inventado una realidad en donde los números reales existen, asociados insolublemente al símbolo R o al objeto geométrico recta (que es una ficción humana que no existe en la naturaleza). Los números reales no existen en la naturaleza, ninguna medición física es un número irracional, ésta sólo existe en la mente humana, una mente que inventa incesantemente, crea realidades, algunas fácticas y otras mentales, pero todo o casi todo contribuye al desarrollo humano.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

Los fractales en la naturaleza

Los fractales son estructuras cuyo patrón se repite a diferentes escalas y casi de manera infinita. Están presentes prácticamente en todos los aspectos de nuestro entorno, casi ocultos a simple vista.

Estiben.jpg

Con la muerte de Arquímedes se inicia el ocaso de los griegos, en el año 146 a.C. los romanos invadieron Cartago y el Mediterráneo, menos Egipto.

robot.jpg

Niños inquietos e inteligentes como el que me preguntó hay muchos en nuestro país; pero muy pocos son rescatados y apoyados para continuar con sus estudios

06.JPG

El país carece de una Ley en Ciencia y tecnología, aunque se ha hablado al respecto de realizarla, aun no hay avances en este tema.

Pelagra, signo de rezago en un mundo desarrollado

Muchas de las enfermedades “del mundo moderno” (cáncer, diabetes, hipertensión, asma, demencia) son producto de los “malos hábitos” alimenticios y falta de ejercicio.

carl.jpg

Carl Jacobi desarrolló una intensa labor de investigación, su obra científica publicada por la Academia de Ciencias de Berlín asciende a ocho volúmenes.

Tedros.jpg

El acceso a las vacunas “es uno de los retos definitorios de la pandemia”, afirmó el máximo responsable de la agencia de salud de Naciones Unidas.

tla.jpg

El famoso Axioma de elección juega un poco con la intuición humana, ya que demuestra que todo conjunto puede ser bien ordenado, aunque no se muestra cuál es ese orden.

pas.jpg

Estamos entrando en una crisis mundial de salud que, de no atenderse adecuada y prontamente, podría dirigirnos a una época en la que las personas morirán por infecciones microbianas.

Romeo.jpg

¿Es posible encontrar la cuadratura de una figura geométrica? la respuesta en este texto. La cuadratura de una figura geométrica consiste en encontrar exactamente su área en un cuadrado.

Táctica deportiva y entrenamiento: ¿inconsciente o consciente?

Cuando se habla de entrenamiento deportivo y su dosificación en los atletas, entran en juego diversas variantes que influirán en resultados ya sea positivos o negativos.

El club de los matemáticos

El club de los matemáticos está constituido por un conjunto de seres humanos con alta formación matemática y capaces de inventar nuevos teoremas.

Lluvia ácida, otro fenómeno de la contaminación

Este fenómeno tiene graves consecuencias para el medio ambiente. Elimina la capa de protección de las plantas, dejándolas desprotegidas a la acción del viento, el frío, la sequía y convirtiéndolas en presa fácil de los parásitos o plagas, que provocan su muerte.

romeo.jpg

El hombre antiguo estuvo “muy cerca” de hallar el área del círculo. Sin embargo, como nos enseñaron en “las buenas escuelas”, el área del círculo con radio uno es un número irracional con un número infinito de dígitos que no son periódicos.

Se acelera sexta extinción masiva de especies

“La extinción de especies es uno de los grandes problemas ambientales y, junto con el cambio climático y un holocausto nuclear, podrían colapsar la civilización”, planteó el ecólogo mexicano Gerardo Ceballos.