Cargando, por favor espere...
Cuando las limitaciones cognitivas y temporales propias de la especie humana no nos permiten verificar ciertas afirmaciones matemáticas, habitualmente recurrimos a nuestra intuición como una especie de proyección para llegar a lo inalcanzable, por lo tanto, recurrimos a la axiomatización. Cuando no entienden o no pueden cerciorarse bien, los matemáticos axiomatizan, con ello le dan una validez formal a sus afirmaciones, aunque éstas conlleven consecuencias a veces contraintuitivas, como el caso del llamado Axioma de elección, que habitualmente se usa en el trabajo matemático.
Ernst Zermelo (1871-1953) plantea, en 1904, el famoso Axioma de elección, en donde establece la existencia de un conjunto cuyos elementos son extraídos de un conjunto infinito, jugando un poco con la intuición humana. Esta idea ya se había utilizado por otros matemáticos, pero no se encontraba debidamente fundamentada. Ernst Zermelo fue criticado muy duramente por matemáticos de renombre como Lebesgue, Borel, Baire, Hadamad, quienes consideraban que tal función de elección debería ser construida o especificada. Con este Axioma, Ernst Zermelo demuestra que todo conjunto puede ser bien ordenado (entre ellos el conjunto de los números reales) aunque no se muestra cuál es ese orden. Los teoremas de existencia empezaron a ser cuestionados por la comunidad matemática.
Plantearemos la idea de este Axioma:
1.- Evidentemente, si tenemos un número finito de conjuntos diferentes del vacío, en cada conjunto es posible elegir un elemento; esta idea de elegir en cada conjunto diferente del vacío, técnicamente es llamada función de elección. Esta función permite construir un conjunto con los elementos elegidos que es llamado conjunto de elección.
2.- Lo que no es tan evidente es que podamos hacer lo descrito anteriormente si el número de conjuntos diferentes del vacío es infinito. Nuestra temporalidad humana no nos permite verificar que es posible elegir. Sin embargo, apelando a nuestra intuición humana, es plausible afirmar que sí es posible realizarlo y, por lo tanto, generar un conjunto de elección.
El paradigma del formalismo en donde estamos inmersos los matemáticos nos permite decretarlo a través de un axioma, denominado Axioma de elección.
En la práctica matemática, cuando escogemos un representante de una clase de equivalencia, lo hacemos con fundamento en el Axioma de elección. Con este axioma se prueban resultados importantes en la matemática, por ejemplo, que todo espacio vectorial tiene una base, todo conjunto es bien ordenado, los famosos teoremas de Hann – Banach, etc.
Si bien es cierto que la gran mayoría de matemáticos acepta este axioma, existe otro grupo de matemáticos que lo cuestiona, sobre todo los matemáticos de la escuela intuicionista, para quienes no basta decretar la existencia de un objeto matemático, sino que es indispensable construirlo, si no hay construcción, no hay existencia. El matemático formalista acepta este axioma sin mayor objeción, puesto que se permite inventar algún axioma, como regla de juego inicial, lo importante para el formalista es que no entre en contradicción con otros axiomas. En este sentido, la axiomática de Zermelo-Fraenkel es la más difundida para fundamentar casi toda la matemática (con base en la teoría de conjuntos); no entra en contradicción con el Axioma de elección. Este resultado fue probado con los trabajos de Kurt Gödel y Paul Cohen que demuestran que el Axioma de Elección es lógicamente independiente de los otros axiomas de la teoría axiomática de conjuntos.
La aceptación del Axioma de elección implica algunos resultados sorprendentes, como la existencia de conjuntos no medibles dentro de la recta o del plano; que trae como consecuencia paradojas tan extrañas como la paradoja de Tarski-Banach, según la cual podemos descomponer una esfera maciza en una serie de ocho piezas de modo que al reconstruirla tengamos una esfera de tamaño doble de la anterior. De otro lado, la independencia de este axioma con otros axiomas de la teoría trae como consecuencia que, aunque tengamos un axioma que entre en contradicción con el Axioma de
elección, no conlleve una contracción posterior; por lo tanto, la demostración por el absurdo no es operatizable en este contexto.
El mundo generó más electricidad a partir de combustibles fósiles en 2020 que en 2015, año en que 190 países firmaron el Acuerdo de París y se comprometieron a reducir la emisión de gases de efecto invernadero.
Si las personas se pierden el eclipse solar que ocurrirá este 8 de abril, tendrán que esperar por lo menos 30 años para que este fenómeno vuelva a suceder con las mismas características.
En celebraciones como el maratón Guadalupe-Reyes, podemos encontrar diferentes elementos con historias científicas interesantes. Empecemos hablando de la nochebuena y el muérdago, dos plantas asociadas con la Navidad.
Monitorear la evolución del rendimiento deportivo de los atletas a lo largo de las fases de preparación para una competencia es un tema que ha tomado relevancia en los últimos años, sin embargo, no todos los deportistas tienen las herramientas necesarias para realizarla con eficacia.
Este 14 de octubre ocurrirá un eclipse anular de sol, mismo que no se veía desde 1984. Para apreciarlo mejor, el IPN regalará más de 2 mil 500 lentes certificados en dos lugares. Te decimos dónde.
El estudio fue publicado en la revista Science y revela que el cerebro utiliza un mecanismo específico para etiquetar ciertos recuerdos y fijarlos durante el sueño.
La NASA informó que este año habrá cuatro espectáculos de luz y sombra al alinearse la Tierra, la Luna y el Sol.
Entre los hallazgos se identificaron decenas de moluscos, tres peces y un camarón, además de una enigmática criatura que desconcertó a los científicos.
El Siglo XXI es de la comunicación matemática, espero que en el futuro se sumen una mayor cantidad de divulgadores y difusores del conocimiento matemático, así la contribución para nuestra sociedad será enorme, entre sus muchos beneficios, porque mejorará la educación ciudadana.
Así fue como nacieron las nuevas geometrías, que describen con más exactitud el universo donde vivimos, sin omitir y rechazar a la geometría euclidiana.
Con sus ataques a las instituciones educativas y culturales, López Obrador pretende eliminar el pensamiento crítico, una actitud retrógrada muy parecida a la que hace varios siglos desembocó en el asesinato de judíos en la primera mitad del Siglo XX.
El Presidente López Obrador desea transformar al modelo educativo actual del CIDE en brazo ideológico de la 4ª T, pero se limita a imponer un director obsecuente sin precisar qué tipo de economía reemplazará al “neoclasisismo” y al “neoliberalismo”.
La secuenciación del genoma del cacao ha abierto nuevas fronteras en la mejora de la calidad y sostenibilidad del cultivo de cacao.
La filosofía no es un adorno, merece que se le reconozca su capacidad de estudio de la realidad, su utilidad en el más amplio sentido de la palabra, pues la humanidad la necesita para manifestarse como tal. Olvidar a la filosofía es condenarnos a las sombras...
Ante el actual embate del cambio climático, ¿cómo superará la humanidad dicha contradicción? ¿Mediante la competencia o la cooperación?
México exporta más bajo reglas de la OMC que del T-MEC: Banco Base
"Shen Yun": evento que promueve adoctrinamiento contra China
Con represión responde alcaldía de Azcapotzalco a manifestación de artistas
Llevará a México hasta 30 años atender rezago en infraestructura escolar
¡Gratis! Trámite de Voluntad Anticipada para adultos mayores
Stellantis suspende producción en México y Canadá por aranceles de EE.UU.
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador