Cargando, por favor espere...
Cuando las limitaciones cognitivas y temporales propias de la especie humana no nos permiten verificar ciertas afirmaciones matemáticas, habitualmente recurrimos a nuestra intuición como una especie de proyección para llegar a lo inalcanzable, por lo tanto, recurrimos a la axiomatización. Cuando no entienden o no pueden cerciorarse bien, los matemáticos axiomatizan, con ello le dan una validez formal a sus afirmaciones, aunque éstas conlleven consecuencias a veces contraintuitivas, como el caso del llamado Axioma de elección, que habitualmente se usa en el trabajo matemático.
Ernst Zermelo (1871-1953) plantea, en 1904, el famoso Axioma de elección, en donde establece la existencia de un conjunto cuyos elementos son extraídos de un conjunto infinito, jugando un poco con la intuición humana. Esta idea ya se había utilizado por otros matemáticos, pero no se encontraba debidamente fundamentada. Ernst Zermelo fue criticado muy duramente por matemáticos de renombre como Lebesgue, Borel, Baire, Hadamad, quienes consideraban que tal función de elección debería ser construida o especificada. Con este Axioma, Ernst Zermelo demuestra que todo conjunto puede ser bien ordenado (entre ellos el conjunto de los números reales) aunque no se muestra cuál es ese orden. Los teoremas de existencia empezaron a ser cuestionados por la comunidad matemática.
Plantearemos la idea de este Axioma:
1.- Evidentemente, si tenemos un número finito de conjuntos diferentes del vacío, en cada conjunto es posible elegir un elemento; esta idea de elegir en cada conjunto diferente del vacío, técnicamente es llamada función de elección. Esta función permite construir un conjunto con los elementos elegidos que es llamado conjunto de elección.
2.- Lo que no es tan evidente es que podamos hacer lo descrito anteriormente si el número de conjuntos diferentes del vacío es infinito. Nuestra temporalidad humana no nos permite verificar que es posible elegir. Sin embargo, apelando a nuestra intuición humana, es plausible afirmar que sí es posible realizarlo y, por lo tanto, generar un conjunto de elección.
El paradigma del formalismo en donde estamos inmersos los matemáticos nos permite decretarlo a través de un axioma, denominado Axioma de elección.
En la práctica matemática, cuando escogemos un representante de una clase de equivalencia, lo hacemos con fundamento en el Axioma de elección. Con este axioma se prueban resultados importantes en la matemática, por ejemplo, que todo espacio vectorial tiene una base, todo conjunto es bien ordenado, los famosos teoremas de Hann – Banach, etc.
Si bien es cierto que la gran mayoría de matemáticos acepta este axioma, existe otro grupo de matemáticos que lo cuestiona, sobre todo los matemáticos de la escuela intuicionista, para quienes no basta decretar la existencia de un objeto matemático, sino que es indispensable construirlo, si no hay construcción, no hay existencia. El matemático formalista acepta este axioma sin mayor objeción, puesto que se permite inventar algún axioma, como regla de juego inicial, lo importante para el formalista es que no entre en contradicción con otros axiomas. En este sentido, la axiomática de Zermelo-Fraenkel es la más difundida para fundamentar casi toda la matemática (con base en la teoría de conjuntos); no entra en contradicción con el Axioma de elección. Este resultado fue probado con los trabajos de Kurt Gödel y Paul Cohen que demuestran que el Axioma de Elección es lógicamente independiente de los otros axiomas de la teoría axiomática de conjuntos.
La aceptación del Axioma de elección implica algunos resultados sorprendentes, como la existencia de conjuntos no medibles dentro de la recta o del plano; que trae como consecuencia paradojas tan extrañas como la paradoja de Tarski-Banach, según la cual podemos descomponer una esfera maciza en una serie de ocho piezas de modo que al reconstruirla tengamos una esfera de tamaño doble de la anterior. De otro lado, la independencia de este axioma con otros axiomas de la teoría trae como consecuencia que, aunque tengamos un axioma que entre en contradicción con el Axioma de
elección, no conlleve una contracción posterior; por lo tanto, la demostración por el absurdo no es operatizable en este contexto.
Trece mujeres de la Universidad de Harvard marcaron un punto de inflexión en la historia en una época donde las mujeres generalmente eran excluidas de participar en el ámbito científico.
El comportamiento migratorio de los tiburones de Groenlandia aún es un misterio para la comunidad científica.
Las ideas Kantianas empiezan a ser cuestionadas; uno de sus críticos más importantes fue Bertrand Russell, quien intentó demostrar que la aritmética no era parte de la intuición A priori del tiempo, como manifestaba Immanuel Kant.
“Estamos ante la presencia del gobierno que intenta ver como accidentes, lo que más bien han sido tragedias provocadas por la ausencia de mantenimiento”, denunció Andrés Atayde, presidente del PAN.
Luego de que El Universal publicara el documento que evidencian la postura del Conacyt, este organismo publicó un “aviso informativo” donde acusa al periódico de manipular la información.
Actualmente, diferentes grupos de científicos alrededor del mundo trabajan en la búsqueda y el desarrollo de tratamientos para combatir el Covid-19; el reto es que éstos sean eficaces contra las variantes actuales y futuras.
A partir de este primero de diciembre, dispositivos como Winko, Iphone, ZTE dejarán de ser compatibles con la aplicación de WhatsApp.
El ChatGPT funciona como un programa que responde preguntas, genera texto y sostiene charlas, simulando una conversación real entre personas. Es muy útil, sin embargo, también tiene algunas limitaciones.
La Lluvia de Meteoros Delta Acuáridas será más visible en el hemisferio sur.
El tren estará atravesando el segundo pulmón forestal de América Latina: la selva maya. Fragmenta el hábitat y además viola los derechos de todas las comunidades indígenas que viven en la zona, entre otras graves consecuencias.
Hace un par de años tuve dolor muscular, cansancio, fiebre y malestar general; por los síntomas, pensé que era Covid-19; pero tras varias pruebas, el diagnóstico final fue dengue.
A bordo del cohete Centaur, de la empresa United Launch Alliance (ULA), viajan cinco robots diseñados por la UNAM, mismos que podrán desplazarse de manera autónoma por el suelo de la luna.
Para Pitágoras, el conocimiento no se agota con lo empírico, porque su esencia está en el segundo, se encuentra donde está el número, concebido como una relación abstracta (no de cálculo).
Los mapas son representaciones gráficas de la superficie terrestre.
La disminución de la biodiversidad podría aumentar el riesgo de enfermedades crónicas para la humanidad.
Viable el mundo multipolar; México debe tomar partido
Aumentan reportes de presuntos "pinchazos" en el Metro de la CDMX: Fiscalía investiga
OPS advierte por brote de sarampión en México
Reabren nuevo tramo de la Línea 1 de Metro de la CDMX
Los favoritos para suceder al papa Francisco y sus disputas internas
Por falta de equipo, atienden a bebé con botella de plástico en IMSS-Bienestar
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador