Cargando, por favor espere...

El método de indivisibles de Cavalieri
¿Es posible encontrar la cuadratura de una figura geométrica? la respuesta en este texto. La cuadratura de una figura geométrica consiste en encontrar exactamente su área en un cuadrado.
Cargando...

La cuadratura de una figura geométrica consiste en encontrar exactamente su área en un cuadrado. Por ejemplo, en la Grecia antigua, usando solamente regla (no graduada) y compás se buscó incansablemente cuadrar un círculo dado. El problema se resolvió muchos siglos después, en 1882, con el matemático alemán Ferdinand Lindemann, quien al demostrar que π era un número trascendente, dejó de manifiesto que la cuadratura del círculo por medio de regla y compás, era imposible. De manera similar, para la “cubatura” de una esfera, se busca que un cubo tenga el mismo volumen que la esfera. Ambos términos fueron usados por Cavalieri y Kepler, matemáticos de principios del Siglo XVII, para calcular áreas de figuras planas y volúmenes de cuerpos geométricos. Con la ayuda de los métodos por agotamiento y reducción al absurdo, proporcionados, respectivamente, por Eudoxo de Cnido y Arquímedes de Siracusa, y al incorporar cortes transversales y circulares a sus investigaciones, Kepler y Cavalieri generalizaron y simplificaron el cálculo de áreas de figuras planas como círculos y parábolas y volumen de sólidos como prismas, pirámides, esferas, cilindros y conos. Kepler, por ejemplo, desarrolló la teoría infinitesimal al calcular la cantidad de litros que contenía un barril de vino que le habían vendido para su nuptiae secundae. No estando de acuerdo con el mercader por el método usado por éste para medir el volumen del vino contenido en el barril, él mismo proporcionó un método para volúmenes de diferentes cuerpos de revolución. El volumen de más de 90 sólidos calculados por el astrónomo alemán pueden estudiarse en su obra Nova Stereometria doliorum vinariorum (Nueva geometría sólida de los barriles de vino).

Por su parte, en su obra Geometria indivisibilibus continuorum nova quadam ratione promota (Geometría de los continuos por indivisibles presentada por nuevos métodos), Cavalieri expone magistralmente su método de los indivisibles para calcular volúmenes de diferentes cuerpos geométricos: “Si dos sólidos tienen las alturas iguales y si las secciones hechas por planos paralelos a las bases a la misma distancia de la base están en una determinada proporción, entonces los volúmenes de los sólidos están también en esa proporción”. Cavalieri considera las figuras planas como un conjunto infinito de segmentos de rectas paralelas y a los sólidos como un conjunto infinito de figuras planas paralelas. Estas dos consideraciones junto con el método infinitesimal hicieron posible el cálculo de volúmenes de prismas, pirámides, esferas, cilindros y conos.

A manera de ejemplo, consideremos el volumen de un prisma rectangular recto (V.P.) conocido. Recordemos que la fórmula para calcular su volumen es: área de la base por su altura (AxH), que se usa como medida para calcular el área de otros cuerpos geométricos como el de un cilindro oblícuo (V.C.), de base circular. Ambos cuerpos se colocan uno frente al otro, sus respectivas bases puestas en el mismo plano, con alturas iguales y cumplen la condición de que los planos paralelos, a la base, colocados a la misma distancia de la base tienen una determinada proporción, entonces el volumen del cilindro es calculado. En efecto, (V.P.)/(V.C.)=(AxH)/(V.C.)=A/πr^2, despejando V.C. de la última igualdad se encuentra que V.C.= πr^2H, el cual es el volumen del cilindro. De forma similar se puede calcular el volumen de cualquier prisma, pirámide triangular, cono circular, esfera, etc., (para más detalle consúltese el artículo: los indivisibles de Cavalieri: una perspectiva plausible para el aprendizaje del cálculo de volúmenes, del doctor investigador del Cinvestav Gonzalo Zubieta Badillo).

El matemático italiano publicó 10 libros de matemáticas. Sin embargo, las obras que más influyeron fueron la Geometria indivisibilibus continuorum nova quadam ratione promota y Seis ejercicios geométricos, publicadas, respectivamente, en 1635 y 1647. La mayor parte de los trabajos escritos por Cavalieri trata sobre los problemas de cuadraturas y cubaturas.

Al igual que Euclides de Alejandría, aunque no proporciona definición alguna, Cavalieri considera a los puntos como los indivisibles de las líneas, las líneas como los indivisibles de las figuras planas, y las secciones planas como los indivisibles de los sólidos. Estos elementos constituyentes de las figuras planas y sólidos fueron fundamentales para que Cavalieri comparara y dedujera de áreas y volúmenes conocidos, área y volumen de nuevos cuerpos geométricos.

 

 


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

Charles convence a su hija de que acepte los títulos al portador de una empresa “fantasma”, quien está controlada por Mossack y Fonseca

La historia de esa constante comenzó desde que el hombre tuvo necesidad de construir pirámides con bases circulares y cilíndricas, como lo demuestran los papiros de Ahmes y Moscú.

El famoso Axioma de elección juega un poco con la intuición humana, ya que demuestra que todo conjunto puede ser bien ordenado, aunque no se muestra cuál es ese orden.

El movimiento pedagógico “matemática moderna”, de los años 50-60 del s. XX, trajo consecuencias funestas en la educación; por ello, en los años 70, matemáticos como Morris Kline, escribieron este libro que a nuestro juicio tiene actual vigencia.

Hay quien dice que algo o está vivo o está muerto; sin embargo, todo lo que empieza a vivir comienza a morir al mismo tiempo y todo lo inerte es germen de la vida, porque al final, la vida también es materia...

La empresa Tesla, del multimillonario Elon Musk, pretende fabricar nuevas instalaciones en tres estados de la República Mexicana.

El aporte matemático de Arthur Cayley es impresionante e innovador, sus ideas visionarias han contribuido a desarrollar la matemática moderna.

Un estudio dio a conocer la primera evidencia directa en imágenes de que los bebés reaccionan con expresiones faciales de manera diferente a varios olores y sabores mientras están en el útero.

Un estudio reveló que “quejarse” es uno de los hábitos que más puede generar daños en el cerebro, tanto para la resolución de problemas como para la memoria.salu

El concepto tiempo asocia a los tres componentes estructurales del universo: materia, movimiento y espacio.

¿Alguna vez te has preguntado por qué el cempasúchil tiene ese aroma tan característico? Detrás de su belleza se esconde una historia que explora los compuestos responsables de la “experiencia multisensorial” que ofrece esta flor.

Al repunte del Covid-19 en México y varios países de AL, se suma la preocupación de la gente por saber si esta situación pueda crecer a una magnitud considerable que nos obligue a volver a un confinamiento como en años anteriores.

En teoría, si inventamos un sistema formal del contenido de Don Quijote de La Mancha, lo matematizamos; por lo tanto, lo convertimos en un objeto matemático.

AMLO olvida que el desarrollo económico de un país está directamente relacionado con las inversiones en la investigación y la producción de ciencia y tecnología.

Hijo de un sastre, huérfano a los ocho años. En 1812 escribió la obra cumbre de su carrera científica, la Teoría Analítica del Calor, por la que ganó un premio de la Academia de Ciencias de París.