Cargando, por favor espere...

La negación dialéctica y el espacio curvo de Riemann
Así fue como nacieron las nuevas geometrías, que describen con más exactitud el universo donde vivimos, sin omitir y rechazar a la geometría euclidiana.
Cargando...

La negación –decía Vladimir Illich Uliánov Lenin– es dialéctica únicamente cuando sirve de fuente de desarrollo, cuando conserva y mantiene todo lo positivo del anterior grado de desarrollo. Las negaciones de este tipo pueden encontrarse también en las ciencias y, sobre todo, en las matemáticas, ya que éstas son las más abstractas entre todas las ciencias aplicadas a la investigación de la naturaleza. Precisamente por esta característica, las contradicciones y las negaciones dialécticas son más fáciles de encontrar, decía el matemático francés Gastón Casanova en su obra La matemática y el materialismo dialéctico.

En efecto, las matemáticas no solamente contienen negaciones lógicas, sino también y sobre todo negaciones y contradicciones dialécticas, como las que surgieron del quinto postulado de Euclides para dar origen a las geometrías no-euclidianas, tales como la geometría hiperbólica de Nikolái Lobachevski y Janos Bolyai y la geometría elíptica de Bernhard Riemann, ramas de la matemática que demuestran que el espacio donde vivimos es curvo y no plano, como se consideró durante más de dos mil años.

Al percatarse que la geometría euclidiana no describía algunos fenómenos de la naturaleza, o no los demostraba completamente, los matemáticos arriba citados comenzaron a cuestionar la validez de los axiomas y postulados sobre los que descansaba esa geometría. Pronto notaron que había un error y que era necesario revisar el quinto postulado de Euclides, es decir el de las paralelas, el cual afirmaba que dos rectas p y q pueden ser paralelas únicamente si la suma de los ángulos internos que forman con una secante es igual a 180 grados. La primera negación la hicieron, de manera independiente, el ruso Lobachevski, en 1826, y el húngaro Janos Bolyai, en 1831: que las rectas p y q pueden ser también paralelas si la suma de los ángulos internos que forman con una secante es inferior a 180 grados, lo que implica que hay una infinidad de rectas que pasan por el mismo punto y todas son paralelas a la recta dada. La segunda negación fue descubierta por el matemático alemán Riemman en 1854: que las rectas p y q nunca son paralelas si la suma de los ángulos internos que forman con una secante es mayor a 180 grados, es decir, la existencia de una infinidad de rectas que pasan por un mismo punto y ninguna es paralela a la recta dada.

Tanto Lobachevski como Riemann tuvieron que hacer uso de la práctica para demostrar sus afirmaciones. El primero, cuando observó un triángulo astronómico cuyos vértices estaba “puestos” en el Sol, la Tierra y la estrella Sirio y encontró que la suma de los ángulos interiores de aquel triángulo era menor a 180 grados. El segundo comprobó su teoría cuando observó que dos rectas paralelas (180 grados) levantadas desde el ecuador terrestre hacia el Polo Norte se intersectaban. Al sumar los ángulos interiores del triángulo formado, demostró que era mayor a 180 grados.

Así fue como nacieron las nuevas geometrías, que describen con más exactitud el universo donde vivimos, sin omitir y rechazar a la geometría euclidiana. Ésta fue superada por una negación dialéctica para dar origen a las geometrías hiperbólica y elíptica.

Ahora bien, si analizamos con mucho detenimiento las tres geometrías, la euclidiana, la hiperbólica y la elíptica, observaremos inmediatamente que son contradictorias, pues la primera afirma que hay una y solo una recta paralela a la recta dada; la segunda, que hay una infinidad de paralelas, y la tercera y la última que no hay paralelas, que todas cortan a la recta dada. ¿Cuál es, entonces, la geometría que mejor describe al universo? ¿Es posible obtener una síntesis dialéctica de las tres geometrías mencionadas y que describa con más exactitud el universo en el que vivimos? La respuesta no es fácil, sin embargo hay ejemplos que demuestran que las tres geometrías originan una nueva. El matemático Riemann fue quien, al usar la concepción infinitesimal de la geometría, descubrió la existencia de un nuevo espacio –el espacio curvo de Riemann– que ayudaría posteriormente a Albert Einstein en la creación de su espacio curvo, conocido hoy como el espacio-tiempo.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

Estos datos se obtienen de las observaciones que realiza la Conagua en las estaciones climatológicas.

Los modos del pensamiento matemático influyen en su hacer, el Siglo XX ha sido testigo de al menos dos formas de este hacer, con marcada influencia ideológica.

Este telescopio espacial fue lanzado el sábado mediante el cohete Ariane 5 y es un proyecto liderado por la NASA.

El desequilibrio hídrico ha dejado sin agua a casi 3 mil millones de personas alrededor del mundo

Carl Jacobi desarrolló una intensa labor de investigación, su obra científica publicada por la Academia de Ciencias de Berlín asciende a ocho volúmenes.

Apolonio de Perga, llamado "El Gran Geómetra", es uno de los tres grandes matemáticos de la antigüedad, mérito que comparte con Euclides y Arquímedes.

El desarrollo de la investigación matemática ha sido tan espectacular, que abarcar todo el conocimiento actual de la matemática se ha vuelto imposible para cualquier ser humano.

Para mejorar el rendimiento de los atletas, debemos contemplar en nuestro trabajo deportivo el desarrollo de los conceptos y habilidades que explico en este artículo.

La tecnología hace posible que las ventas en línea lleguen a más personas, sin importar donde se encuentren; por lo que cada vez más usuarios de la red realizan compras a través de internet.

Como los animales de carga, nuestra rutina diaria se limita a dormir, alimentarnos y trabajar.

En la Edad Media se sospechaba que la peste negra era originada por algún agente que entraba en un cuerpo y se trasmitía a otras personas.

Para Pitágoras, el conocimiento no se agota con lo empírico, porque su esencia está en el segundo, se encuentra donde está el número, concebido como una relación abstracta (no de cálculo).

El maíz, con una producción global que supera los 800 millones de toneladas anuales, es el centro de identidad de muchas civilizaciones y la base alimentaria de sociedades antiguas y modernas.

Otra de las ventajas del cultivo in vitro es que le permite al hombre controlar la humedad, la temperatura y la luz, factores decisivos para el crecimiento de una planta, que, de manera natural, no pueden ser controlados.

En la ruleta los resultados son equiprobables, no hay predilección por ningún número o color.