Cargando, por favor espere...
Las conchas, caracoles, moluscos, tormentas, huracanes y galaxias con forma de espiral abundan en la naturaleza y en el universo. Esas espirales son descritas por una ley (fórmula) conocida como la espiral logarítmica, estudiada por primera vez en 1638 por el matemático francés René Descartes (1596–1650) y publicada en 1657. Descartes buscaba una curva con una propiedad similar a la de un círculo, de modo que la tangente en cada punto de la curva formara el mismo ángulo con el vector-radio que partía desde un centro. El segundo científico en estudiar independientemente tal geometría fue el matemático italiano Evangelista Torricelli (1608–1647), quien la describió en 1644 y calculó su longitud. Pero fue Jacob Bernoulli (1655–1705) quien le dedicó más tiempo a su estudio y la caracterizó como la “espiral maravillosa” (Spira mirabilis en latín) con la frase Eadem mutata, resurgo: aunque transformado, aparezco de nuevo igual. Para una circunferencia no es difícil notar que la forma de la figura siempre surge y resurge siendo la misma, pero lo maravilloso es que para la espiral logarítmica el proceso de surgimiento y resurgimiento se verifica también.
Sobre la espiral logarítmica se ha escrito mucho. Mencionaré solo dos obras que pueden ayudar al lector a profundizar sobre el tema. La primera es el libro del director de la División de Ciencias del Hubble Space Telescope Science Institute, Mario Livio, titulado La proporción áurea: la historia del phi, el número más sorprendente del mundo, págs. 130–139; la segunda se encuentra en el libro On Growth and Form (Sobre crecimiento y forma), de D’Arcy Thompson, quien dedicó el capítulo XI de su tratado a la espiral logarítmica.
En estas dos obras se explica que la circunferencia es equiangular, es decir, que en cualquier punto de ella, el ángulo que forma el radio con la tangente es siempre constante e igual a un ángulo recto. Por eso Descartes se había planteado la determinación de una curva que también fuera equiangular. Esta propiedad fue estudiada con más detenimiento por Jacob, a tal grado que solicitó que en su epitafio se colocara la frase Eadem mutata, resurgo: deseo que no se cumplió.
Para entender la espiral logarítmica es necesario dividir su explicación en varios incisos. El primero tiene que ver con su construcción dinámica –dependiente del tiempo– y la obtención de la relación estática entre la distancia y el ángulo que se forma con el vector – radio r, conocido como ángulo polar, que denotaremos θ, es decir, la relación r= a.ebθ. El número real positivo a es un factor de escala que determina el tamaño de la espiral, mientras que el número real positivo b controla cuán fuerte y en qué dirección está enrollada dicha espiral. La ecuación polar considerada más arriba, puede también escribirse como θ=1/b ln(r/a) es decir, el ángulo polar θ expresado en función de logaritmo de radio polar r. De ahí su nombre espiral logarítmica. En el segundo inciso, tomando al valor a como un factor de escala y b=1 obtenemos la circunferencia. El tercer inciso explica que la espiral logarítmica es también considerada espiral geométrica, ya que las distancias entre sus brazos se incrementan en progresión geométrica, mientras que en una espiral de Arquímedes, por ejemplo, esas distancias son constantes. En el cuarto inciso se encuentra la característica equiangular que motivó a Descartes y que emocionó a Jacob Bernoulli al caracterizar la curva logarítmica como “espiral maravillosa”, pues al igual que en la circunferencia en la espiral logarítmica la forma de la figura siempre surge y resurge siendo la misma.
En conclusión, esta ley encontrada por René Descartes, Jacob Bernoulli y Evangelista Torricelli, surgió de un análisis profundo que ellos hicieron sobre los fenómenos naturales mencionados al principio, además de las espirales que observaron en el mundo de las plantas como, por ejemplo, la ubicación de las semillas de un girasol, las escamas de una piña, etc. Pero no solo eso, gracias a sus aportaciones sobre la espiral logarítmica, el hombre ha podido fabricar cuchillas giratorias en varias máquinas que por su característica logarítmica tienen un desgaste menor.
En 2019, las berries fueron el tercer producto agroalimentario más exportado por nuestro país después de la cerveza y el aguacate.
Alan Turing no fue un estudiante brillante, pero si talentoso, perseverante en los problemas que quería resolver. Se hizo famoso cuando inventó una máquina capaz de descifrar los códigos secretos de comunicación usados en la SGM.
Se observaron más microplásticos en los polvos atmosféricos cerca de los centros industriales, comerciales y urbanos como: Tlalnepantla, Iztapalapa y La Merced.
Como resultado de la fiscalización que hizo la ASF al Sistema Nacional de Investigadores del CONACYT; se detectaron inconsistencias por casi 20 millones de pesos.
Aunque amado por unos y odiado por otros, el huitlacoche tiene un papel relevante en la economía, gastronomía y en la ciencia.
La polinización es considerada fundamental para el bienestar humano. Sin embargo, esta actividad está en peligro por la baja en las poblaciones de polinizadores dado el calentamiento global, y la degradación del aire, el agua y el suelo.
Cavalieri y Torricelli, matemáticos que hicieron historia en su tiempo.
Las buenas noticias disparadas desde Palacio Nacional, que pintan a un México próspero y “feliz”, parecen no corresponderse con las estadísticas del INEGI.
“Caffarelli tiene una intuición fantástica, es sencillamente notable… me costó mucho seguirle el ritmo. De algún modo, ve inmediatamente cosas que los otros no ven”, afirmó el afamado matemático Louis Nirenberg.
Ramón Picarte siempre pensó que la matemática debería ser un aporte para sacar a las personas de la pobreza; con esa idea organizó e impulsó diferentes sociedades cooperativas de artesanos y trabajadores de Santiago.
Este miércoles, la Ciudad de México fue reconocida como la ciudad con más puntos conectados a internet en el mundo, superando incluso a Moscú, Rusia. En contraste, también ostenta el primer lugar en mayor desigualdad.
“Para los mexicanos, el maíz está entrelazado con su vida, su historia y sus tradiciones; no es solo un cultivo, sino el centro de su identidad", Sin embargo, hoy el maíz no cubre la demanda nacional, entre otras deficiencias.
La importancia de su trabajo científico radicó en que se adelantaron a predecir lo que pasaría antes de la completa destrucción de la capa de ozono (O3).
Este sistema de producción agrícola forma un hábitat para la biodiversidad acuática de la zona y brinda un paraje paisajístico para residentes y turistas.
A pesar de todas las riquezas que posee África (y que aquí menciono), la gran mayoría de la población vive una situación muy deplorable, lo que representa una gran contradicción.
Ola de calor y sequía impactarán a los mexicanos más pobres
Establecen acuerdos Rusia y Ucrania tras encuentro en Estambul
Estudiantes del Politécnico marcha a Zacatenco
A ochenta años de la Victoria sobre el nazismo, ¿quién ganó la guerra?
IMCO urge inversiones en energía para evitar crisis eléctrica en 2030
Gobierno gasta menos en infraestructura y más en pago de intereses
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.