Cargando, por favor espere...

René Descartes: “pienso luego existoˮ
Esencialmente el método filosófico propuesto por René Descartes tenía una inspiración matemática, a saber: No admitir nada absolutamente evidente.
Cargando...

A lo largo de la historia, las concepciones filosóficas, han sido vitales para el desarrollo y creación del conocimiento matemático. En la edad antigua, las concepciones platónicas influyeron para desarrollar la aritmética y la geometría griega, que hacía distinción entre número y magnitud. Además, concebían a la naturaleza en tal perfección y armonía que indujeron a considerar a la recta (sin graduación) y el compás, como únicos artefactos para el estudio de la geometría. En la edad media hubo poco desarrollo, sin embargo entrando al Siglo XVI, los matemáticos italianos, ya poseían formas de resolver ecuaciones cúbicas, es decir, un cierto nivel algebraico se había alcanzado aunque con ciertas limitaciones notacionales y de metodología, que fueron superándose paulatinamente.

Hasta el Siglo XVI, la geometría griega de carácter sintético (hipotético deductivo), constituía un mundo disociado del mundo algebraico de las ecuaciones, una conexión entre ambos mundos, se pudo establecer, bajo la concepción filosófica denominada racionalismo; uno de los representantes de esta corriente filosófica fue el filósofo y matemático francés René Descartes (1596 - 1650), quien se proponía establecer una forma universal de conocimiento, bajo una cierta metodología.

Después de estudiar a Arquímedes, Euclides, Apolonio y a Diofanto, René Descartes entró en profundas reflexiones filosóficas, cuestionando la existencia del ser y de Dios, de quien era un profundo creyente. Una de las preguntas que intentó responder fue: ¿Cómo podemos estar seguros de que realmente estamos viviendo y sintiendo el mundo exterior; es un simulacro provocado por un genio (mago) que trata de embaucarnos? Esta pregunta existencial, fue respondida por el mismo Descartes con la frase “pienso, luego existo”, es decir, estamos seguros que estamos viviendo puesto que primero pensamos. Esta racionalidad de entender los problemas metafísicos, hizo que escribiera una de sus obras más famosas El Discurso del Método, publicada en 1629, se editaron tres mil ejemplares en dos ediciones; en esta obra, Descartes buscaba dirigir la razón y hallar la verdad en las ciencias. La obra venía acompañada de tres tratados: a) Dióptrica (estudio de la luz, el ojo humano, telescopio), b) Los meteoros, c) La geometría, obra que marcó un antes y un después en el desarrollo matemático, iniciando una de las etapas más trascendentes de la matemática.

Esencialmente el método filosófico propuesto por René Descartes tenía una inspiración matemática, a saber: No admitir nada absolutamente evidente. Dividir el problema en casos particulares como sea necesario para resolverlo mejor. Dirigir por orden el pensamiento, empezando de lo simple a lo complejo. Enunciar los datos del problema, revisando los elementos de solución de cada uno, para asegurarse de que se ha hecho todo correctamente.

Aunque actualmente esta metodología puede parecer trivial, hay que contextualizarlo, puesto que en la edad media existían creencias, mitos y métodos no racionales con fuerte influencia religiosa. Sin embargo, basado en este método, Descartes propuso una demostración elemental de la existencia de Dios, bajo el siguiente raciocinio:

Todas las perfecciones son propiedades de un ser supremo. La existencia es una perfección. Entonces, este ser supremo tiene existencia.

Aunque algunas hipótesis, pueden ser debatibles, es importante tomar en cuenta, las nociones de verdad de la época.

Su concepción filosófica llevó a René Descartes a intentar superar, el limitante griego entre número y magnitud, o sea, entre aritmética y geometría, considerando formas de aritmetizar a las magnitudes geométricas, usando una idea que, de alguna forma, había empleado el antiguo griego Apolonio en su Secciones cónicas, que actualmente se llama Sistema de coordenadas cartesianas. Constituyendo una hermosa conexión entre álgebra y geometría, dando inicio a uno de los métodos más fructíferos en el desarrollo matemático.  Es importante mencionar que esta técnica inventada por René Descartes es desarrollada con ejes oblicuos, la versión actual de sistemas de coordenadas rectangulares se le atribuye a Isaac Newton.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

Serán las masas populares quienes realicen el cambio para que disfruten su trabajo creador

“En México no se está instrumentando una política real para salvar la vida y proteger a los mexicanos de los desastres naturales", afirmó el Doctor en Física, Romeo Pérez Ortiz.

En celebraciones como el maratón Guadalupe-Reyes, podemos encontrar diferentes elementos con historias científicas interesantes. Empecemos hablando de la nochebuena y el muérdago, dos plantas asociadas con la Navidad.

La deficiencia o error no está en el modelo matemático que se está usando, sino en la metodología implementada, en la recopilación de información y en los cálculos aritméticos.

"Bard" tienen como propósito contribuir con la creatividad de los internautas, al tiempo en que les facilita la ejecución de diversas tareas.

En matemática, los pitagóricos demostraron que: la suma de las medidas de los ángulos interiores de un triángulo es 180°.

“(La sesión) fue aplazada en aras de garantizar el estricto apego a las disposiciones normativas relativas al proceso de notificación”, se lee en el comunicado.

Las redes sociales como Facebook, buscan que los seres humanos busquen “ser aceptados”, “ser populares”, “ser famosos” pero sin tener actos valiosos para la sociedad.

¿Cómo es que estos genes pasaban de los padres a los hijos?

La Nochebuena era una flor predilecta para los aztecas, zapotecas, zoques, chontales y totonacas.

Es el corazón del marxismo hay una forma de concebir la política revolucionaria que, a mi juicio, es necesario comprender, asimilar y recordar siempre.

Si las personas se pierden el eclipse solar que ocurrirá este 8 de abril, tendrán que esperar por lo menos 30 años para que este fenómeno vuelva a suceder con las mismas características.

Isaac Newton tenía una visión matemática y física del mundo al mismo tiempo que una concepción metafísica y alquimista de la naturaleza que lo hacen admirable entre sus contemporáneos y entre los científicos de hoy.

El gran pensador griego demuestra que el continuo no puede estar hecho de un conjunto de indivisibles (átomos) o de puntos (“aquello indivisible en partes”), como lo habían planteado Leucipo, Demócrito y Euclides.

Los bosques de oyamel (familia Pinaceae) constituyen un ecosistema que se desarrolla a una altitud de entre dos mil y tres mil 600 metros sobre el nivel del mar y se pueden encontrar en las zonas montañosas de México.