Cargando, por favor espere...

René Descartes: “pienso luego existoˮ
Esencialmente el método filosófico propuesto por René Descartes tenía una inspiración matemática, a saber: No admitir nada absolutamente evidente.
Cargando...

A lo largo de la historia, las concepciones filosóficas, han sido vitales para el desarrollo y creación del conocimiento matemático. En la edad antigua, las concepciones platónicas influyeron para desarrollar la aritmética y la geometría griega, que hacía distinción entre número y magnitud. Además, concebían a la naturaleza en tal perfección y armonía que indujeron a considerar a la recta (sin graduación) y el compás, como únicos artefactos para el estudio de la geometría. En la edad media hubo poco desarrollo, sin embargo entrando al Siglo XVI, los matemáticos italianos, ya poseían formas de resolver ecuaciones cúbicas, es decir, un cierto nivel algebraico se había alcanzado aunque con ciertas limitaciones notacionales y de metodología, que fueron superándose paulatinamente.

Hasta el Siglo XVI, la geometría griega de carácter sintético (hipotético deductivo), constituía un mundo disociado del mundo algebraico de las ecuaciones, una conexión entre ambos mundos, se pudo establecer, bajo la concepción filosófica denominada racionalismo; uno de los representantes de esta corriente filosófica fue el filósofo y matemático francés René Descartes (1596 - 1650), quien se proponía establecer una forma universal de conocimiento, bajo una cierta metodología.

Después de estudiar a Arquímedes, Euclides, Apolonio y a Diofanto, René Descartes entró en profundas reflexiones filosóficas, cuestionando la existencia del ser y de Dios, de quien era un profundo creyente. Una de las preguntas que intentó responder fue: ¿Cómo podemos estar seguros de que realmente estamos viviendo y sintiendo el mundo exterior; es un simulacro provocado por un genio (mago) que trata de embaucarnos? Esta pregunta existencial, fue respondida por el mismo Descartes con la frase “pienso, luego existo”, es decir, estamos seguros que estamos viviendo puesto que primero pensamos. Esta racionalidad de entender los problemas metafísicos, hizo que escribiera una de sus obras más famosas El Discurso del Método, publicada en 1629, se editaron tres mil ejemplares en dos ediciones; en esta obra, Descartes buscaba dirigir la razón y hallar la verdad en las ciencias. La obra venía acompañada de tres tratados: a) Dióptrica (estudio de la luz, el ojo humano, telescopio), b) Los meteoros, c) La geometría, obra que marcó un antes y un después en el desarrollo matemático, iniciando una de las etapas más trascendentes de la matemática.

Esencialmente el método filosófico propuesto por René Descartes tenía una inspiración matemática, a saber: No admitir nada absolutamente evidente. Dividir el problema en casos particulares como sea necesario para resolverlo mejor. Dirigir por orden el pensamiento, empezando de lo simple a lo complejo. Enunciar los datos del problema, revisando los elementos de solución de cada uno, para asegurarse de que se ha hecho todo correctamente.

Aunque actualmente esta metodología puede parecer trivial, hay que contextualizarlo, puesto que en la edad media existían creencias, mitos y métodos no racionales con fuerte influencia religiosa. Sin embargo, basado en este método, Descartes propuso una demostración elemental de la existencia de Dios, bajo el siguiente raciocinio:

Todas las perfecciones son propiedades de un ser supremo. La existencia es una perfección. Entonces, este ser supremo tiene existencia.

Aunque algunas hipótesis, pueden ser debatibles, es importante tomar en cuenta, las nociones de verdad de la época.

Su concepción filosófica llevó a René Descartes a intentar superar, el limitante griego entre número y magnitud, o sea, entre aritmética y geometría, considerando formas de aritmetizar a las magnitudes geométricas, usando una idea que, de alguna forma, había empleado el antiguo griego Apolonio en su Secciones cónicas, que actualmente se llama Sistema de coordenadas cartesianas. Constituyendo una hermosa conexión entre álgebra y geometría, dando inicio a uno de los métodos más fructíferos en el desarrollo matemático.  Es importante mencionar que esta técnica inventada por René Descartes es desarrollada con ejes oblicuos, la versión actual de sistemas de coordenadas rectangulares se le atribuye a Isaac Newton.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

El inicio de la rigurosidad en el pensamiento matemático es obra del gran maestro Weierstrass, quien, entre otras atribuciones, estableció la existencia de una curva continua sin tangentes, sorprendiendo a los analistas de su época.

“Un lugar como nosotros depende totalmente del ingreso de los visitantes, dependemos de que los visitantes hagan el pago de su boleto para vivir la experiencia", dijo el director general.

Existe una gran variedad de patrones que "evocan sensaciones dinámicas conscientes de movimiento ilusorio, a pesar de ser estático", explicaron los especialistas en su más reciente estudio.

Los hallazgos sugieren un movimiento continuo hacia el oeste a lo largo de millones de años, lo que ha llevado a un refinamiento de la teoría de la tectónica de placas.

Desde el punto de vista filosófico, D’Álembert era partidario de la unidad del saber, proponía el progreso de la humanidad a través del desarrollo de la ciencia, unificadas por una filosofía desprendida de los mitos y creencias transcendentales.

Invadiendo el mundo, es una cinta que exhibe con nitidez escenas racistas sobresalientes como la que provocó la muerte del afroamericano George Floyd en Minneapolis.

Un estudio dio a conocer la primera evidencia directa en imágenes de que los bebés reaccionan con expresiones faciales de manera diferente a varios olores y sabores mientras están en el útero.

Para describir el comportamiento de los fenómenos físicos, biológicos, químicos, sociales o económicos, el hombre recurre, en la mayoría de los casos, a modelos matemáticos para ayudarse a resolver dos tipos de problemas.

El desarrollo de la sociedad planteó nuevos retos que propiciaron la creación de nuevas herramientas, que ayudaron a encontrar el área exacta de un círculo de radio uno.

Un estudio identificó a cinco pacientes que desarrollaron la enfermedad de Alzheimer “por contagio”, quienes durante su infancia recibieron un tratamiento hormonal de crecimiento a fin de modificar sus estaturas.

El desequilibrio hídrico ha dejado sin agua a casi 3 mil millones de personas alrededor del mundo

La influencia que han ejercido las ideas de Platón (Atenas, 429-347 a. C.) en la mente de los matemáticos perdura hasta nuestros días. Matemáticos contemporáneos como G. H. Hardy y Kurt Gödel son declarados platonistas.

Si reflexionamos sobre nuestra situación antes de la pandemia, podremos darnos cuenta que ya estábamos enfermos cuando llegó el SARS-CoV-2.

Creer que las verdades matemáticas y objetos matemáticos tienen existencia independiente de la mente humana no tiene fundamento; desde Pitágoras hasta algunos matemáticos más contemporáneos creen en esta independencia.

Todos los avances de la humanidad tendrán que dejar de ser coágulos de trabajo con plusvalía contenida y tendrán que pasar a ser simplemente bienes y servicios.