Cargando, por favor espere...

¿Es la matemática una ciencia?
Alguna vez escuché decir que la matemática no es una ciencia al no someterse al método científico, pero en ciertos trabajos se ha exigido a los estudiantes utilizar el método científico, ¿cómo es posible? Aquí explico.
Cargando...

En alguna oportunidad escuché decir que la matemática no es una ciencia, puesto que no se somete al método científico (común en los manuales de investigación científica), es decir, a grandes rasgos, seguir la siguiente metodología: realidad problemática, planteamiento de una hipótesis, contrastación de la hipótesis, conclusiones. Incluso es común ver en algunas universidades exigir este mismo proceso, para trabajos de investigación en matemática, por ejemplo, en las tesis, causando desconcierto en el estudiantado. Esta confusión académica es la que pretendo aclarar en este artículo.

En primer lugar, ¿qué entendemos por ciencia? Ciencia es un tipo de pensamiento creativo cuyo producto final es el conocimiento. La metodología para obtener el conocimiento depende de sus objetos de estudio; en ese sentido, puede ser de dos formas: formal o fáctica, es decir si trata de constructos o de hechos. Por constructo u objeto conceptual entendemos una creación mental (cerebral), pero no psíquica.

La matemática y la lógica son ciencias formales porque tratan de constructos, ideas que se encuentran en la mente humana, por lo tanto, no se sirven de procedimientos empíricos. El resto del conocimiento humano es fáctico, es decir trata de cosas concretas, como fenómenos físicos, biológicos, químicos, históricos etc. Las ciencias fácticas, a su vez, se puede dividir en naturales (física, biología etc.) o biosociales (psicología, historia, educación etc.).

Por ello, para las ciencias fácticas, no existe una única metodología de investigación, sino alguna que se adapte al hecho estudiado. Sin embargo, la matemática no estudia hechos concretos, por ello, es independiente de su posible contenido o interpretación con los hechos, es decir, es ontológicamente neutra.

Al matemático no se le dan objetos de estudio, él los inventa, descubre sus propiedades y los conecta con otros objetos inventados, constructos interconectados conceptualmente interpretables. En su génesis es posible que se valga de objetos concretos o de fenómenos sociales para inventar constructos (por ejemplo, números), pero rápidamente se queda con lo conceptual. Es por ello que los objetos matemáticos no se encuentran fuera de nuestros cerebros.

Los objetos matemáticos se encuentran dentro de la mente humana de manera conceptual y no fisiológica, la representación matemática de los objetos tiene como propósito la operatividad y servir de soporte cognitivo, además de perennizar el conocimiento.

Como toda ciencia, la matemática es racional, sistemática y verificable; sin embargo, tiene su propia metodología de estudio con características singulares. La deducción matemática (demostración) usa la lógica estricta, no recurre a la experiencia, establece un punto de partida (axiomas) y reglas de juego coherentes y consistentes.

Las verdades que se derivan del sistema de conocimiento matemático no son absolutos, sino relativos a las reglas de juego iniciales, por ejemplo, la conmutatividad del producto es cierto en los números reales, pero deja de ser cierto en las matrices. Toda demostración matemática es final, atemporal, dentro de un cierto contexto geográfico, por ejemplo, el teorema de Pitágoras, válido en el plano euclidiano, puede ser extensible en una esfera, no será la misma fórmula, pero conceptualmente es la misma idea.

Estas diferencias entre las ciencias formales y las ciencias fácticas, impiden que se les examine conjuntamente; por lo tanto, exigir una misma metodología de investigación no es posible, dada la naturaleza de los objetos de estudio y las características particulares de su investigación.

La matemática es rigurosa, sus afirmaciones son finales y autosuficientes e inventa sus teoremas perfectamente establecidos; sin embargo, en las ciencias fácticas la interpretación de los hechos es inagotable y siempre perfectible; por lo tanto, su metodología es una sucesión de aproximaciones a la realidad temporal.

Las ciencias formales y la ciencia fáctica tienen como propósito común inventar estructuras generales (leyes). Las disciplinas en donde no existe este aporte no pueden llamarse ciencias, y suelen ser lo más atrasado; por ejemplo, la política, donde no existen axiomas básicos en el comportamiento de los políticos. Por lo demás, el trabajo científico en general requiere audacia en la conjetura, rigurosa prudencia, para demostrar (matemática) o someter a contrastación las conjeturas (fácticas).


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

Esta herramienta prescinde de las cuerdas vocales y restaura el habla ofreciendo esperanza para pacientes con trastornos de la voz.

El Cometa Diablo, compuesto de criomagma, una amalgama de hielo, polvo y gas, presenta una estructura peculiar.

Leonard Euler aún de avanzada edad y ciego, continuó su producción a un ritmo acelerado; en 1770 publica otra de sus obras más sobresalientes Introducción al álgebra, pedagógicamente impecable.

Apolonio de Perga, llamado "El Gran Geómetra", es uno de los tres grandes matemáticos de la antigüedad, mérito que comparte con Euclides y Arquímedes.

Cavalieri y Torricelli, matemáticos que hicieron historia en su tiempo.

En febrero de 2001 se publicaron los resultados de casi una década de trabajo del prometedor programa de investigación genética: Proyecto Genoma Humano, el cual logró descifrar el 90 por ciento del genoma humano.

En México hay aproximadamente dos mil especies de abejas nativas. A diferencia de las melíferas, que viven en colonias (colmenas) con su reina y obreras, la mayoría de las nativas son solitarias.

Un estudio reveló que “quejarse” es uno de los hábitos que más puede generar daños en el cerebro, tanto para la resolución de problemas como para la memoria.salu

¿Es normal el adulterio en la naturaleza? Para respondernos analizaremos el comportamiento reproductivo de algunas especies. Tomando como ejemplo a mamíferos y aves, la monogamia existe, pero no es la regla en el mundo natural.

“Caffarelli tiene una intuición fantástica, es sencillamente notable… me costó mucho seguirle el ritmo. De algún modo, ve inmediatamente cosas que los otros no ven”, afirmó el afamado matemático Louis Nirenberg.

Einstein hizo lo mismo con la estructura del universo donde habitamos, al demostrar que es también un espacio curvo.

Las distopías, en esencia, orientan a los espectadores en ese mismo sentido, es decir, al conformismo.

Durante la última década en el Reino Unido, se han identificado 19 nuevos mecanismos genéticos de resistencia en bacterias.

No dormir provoca que el cerebro elimine una cantidad significativa de neuronas, así como una perdida significativa de conexiones sinápticas; lo peor, la recuperación del sueño sería incapaz de revertir el daño.

Además de generar beneficios importantes para los suelos, la materia orgánica contribuye al amortiguamiento de agentes contaminantes. Sin embargo, las actividades humanas han provocado que en el 42% de nuestro territorio los suelos estén casi inservibles.