Cargando, por favor espere...

¿Es la matemática una ciencia?
Alguna vez escuché decir que la matemática no es una ciencia al no someterse al método científico, pero en ciertos trabajos se ha exigido a los estudiantes utilizar el método científico, ¿cómo es posible? Aquí explico.
Cargando...

En alguna oportunidad escuché decir que la matemática no es una ciencia, puesto que no se somete al método científico (común en los manuales de investigación científica), es decir, a grandes rasgos, seguir la siguiente metodología: realidad problemática, planteamiento de una hipótesis, contrastación de la hipótesis, conclusiones. Incluso es común ver en algunas universidades exigir este mismo proceso, para trabajos de investigación en matemática, por ejemplo, en las tesis, causando desconcierto en el estudiantado. Esta confusión académica es la que pretendo aclarar en este artículo.

En primer lugar, ¿qué entendemos por ciencia? Ciencia es un tipo de pensamiento creativo cuyo producto final es el conocimiento. La metodología para obtener el conocimiento depende de sus objetos de estudio; en ese sentido, puede ser de dos formas: formal o fáctica, es decir si trata de constructos o de hechos. Por constructo u objeto conceptual entendemos una creación mental (cerebral), pero no psíquica.

La matemática y la lógica son ciencias formales porque tratan de constructos, ideas que se encuentran en la mente humana, por lo tanto, no se sirven de procedimientos empíricos. El resto del conocimiento humano es fáctico, es decir trata de cosas concretas, como fenómenos físicos, biológicos, químicos, históricos etc. Las ciencias fácticas, a su vez, se puede dividir en naturales (física, biología etc.) o biosociales (psicología, historia, educación etc.).

Por ello, para las ciencias fácticas, no existe una única metodología de investigación, sino alguna que se adapte al hecho estudiado. Sin embargo, la matemática no estudia hechos concretos, por ello, es independiente de su posible contenido o interpretación con los hechos, es decir, es ontológicamente neutra.

Al matemático no se le dan objetos de estudio, él los inventa, descubre sus propiedades y los conecta con otros objetos inventados, constructos interconectados conceptualmente interpretables. En su génesis es posible que se valga de objetos concretos o de fenómenos sociales para inventar constructos (por ejemplo, números), pero rápidamente se queda con lo conceptual. Es por ello que los objetos matemáticos no se encuentran fuera de nuestros cerebros.

Los objetos matemáticos se encuentran dentro de la mente humana de manera conceptual y no fisiológica, la representación matemática de los objetos tiene como propósito la operatividad y servir de soporte cognitivo, además de perennizar el conocimiento.

Como toda ciencia, la matemática es racional, sistemática y verificable; sin embargo, tiene su propia metodología de estudio con características singulares. La deducción matemática (demostración) usa la lógica estricta, no recurre a la experiencia, establece un punto de partida (axiomas) y reglas de juego coherentes y consistentes.

Las verdades que se derivan del sistema de conocimiento matemático no son absolutos, sino relativos a las reglas de juego iniciales, por ejemplo, la conmutatividad del producto es cierto en los números reales, pero deja de ser cierto en las matrices. Toda demostración matemática es final, atemporal, dentro de un cierto contexto geográfico, por ejemplo, el teorema de Pitágoras, válido en el plano euclidiano, puede ser extensible en una esfera, no será la misma fórmula, pero conceptualmente es la misma idea.

Estas diferencias entre las ciencias formales y las ciencias fácticas, impiden que se les examine conjuntamente; por lo tanto, exigir una misma metodología de investigación no es posible, dada la naturaleza de los objetos de estudio y las características particulares de su investigación.

La matemática es rigurosa, sus afirmaciones son finales y autosuficientes e inventa sus teoremas perfectamente establecidos; sin embargo, en las ciencias fácticas la interpretación de los hechos es inagotable y siempre perfectible; por lo tanto, su metodología es una sucesión de aproximaciones a la realidad temporal.

Las ciencias formales y la ciencia fáctica tienen como propósito común inventar estructuras generales (leyes). Las disciplinas en donde no existe este aporte no pueden llamarse ciencias, y suelen ser lo más atrasado; por ejemplo, la política, donde no existen axiomas básicos en el comportamiento de los políticos. Por lo demás, el trabajo científico en general requiere audacia en la conjetura, rigurosa prudencia, para demostrar (matemática) o someter a contrastación las conjeturas (fácticas).


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

Los investigadores rusos, que con sus aportaciones a la humanidad han sido reconocidos con 22 Premio Nobel y 10 Medallas Fields.

volviendo al ejemplo del futbol, las vacunas son el equivalente a jugar un partido amistoso a principio de temporada, solo nos preparan para los posibles escenarios de una “competencia real”.

A la naturaleza no le importa si los machos son atraídos hacia los machos o las hembras hacia las hembras. Es mas bien la ideología humana la que castiga estos comportamientos, argumentando que solo prohíbe lo que es “antinatural”.

Los daños causados al planeta comienzan a pasarnos factura. Las tasas de deforestación han afectado gravemente las distintas funciones de los bosques, además, su papel como regulador del clima está siendo severamente afectado.

Desde el punto de vista biológico, el envejecimiento humano es la acumulación de diversos daños celulares y moleculares a lo largo del tiempo, lo que lleva a un descenso gradual de las capacidades físicas y mentales.

Las distopías, en esencia, orientan a los espectadores en ese mismo sentido, es decir, al conformismo.

El aumento quizá se deba, dicen los científicos, al aumento de la temperatura de la superficie del mar en el mundo, que ha aumentado drásticamente en las últimas décadas como consecuencia de la quema de combustibles fósiles.

La obra aplica de “forma magistral” el método de análisis marxista-leninista, que permite al autor pronosticar los eventos que se desarrollaron en años posteriores, en los que los principales países imperialistas del mundo buscan mantener su hegemonía.

El movimiento pedagógico “matemática moderna”, de los años 50-60 del s. XX, trajo consecuencias funestas en la educación; por ello, en los años 70, matemáticos como Morris Kline, escribieron este libro que a nuestro juicio tiene actual vigencia.

El famoso Axioma de elección juega un poco con la intuición humana, ya que demuestra que todo conjunto puede ser bien ordenado, aunque no se muestra cuál es ese orden.

En el ámbito de la astronomía, Galileo no solo confirmó que la Tierra se movía en torno al Sol y se burló de los inquisidores del Santo Oficio.

Nuestras características físicas son resultado de la combinación de nuestros genes y entorno. Cada quien es distinto: tiene una combinación única de genes y ha sido moldeada por la realidad en que se desarrolla antes y después de nacer.

En la propuesta del Conacyt que ha circulado entre la comunidad, identificamos tres graves problemas: la confusión entre gobierno y Estado, la centralización de las decisiones y la falta de referencia al financiamiento estable.

Si te has identificado con las personas que aman el terror, te contaré una historia de hechos reales que te pondrá los pelos de punta. Ésta es una historia sobre seres vivos que vuelven zombis a sus víctimas.

Einstein hizo lo mismo con la estructura del universo donde habitamos, al demostrar que es también un espacio curvo.