Cargando, por favor espere...

Jacob Bernoulli, matemático fuera de serie
Las matemáticas, por muy abstractas que sean, tienen una base real.
Cargando...

La familia Bernoulli es muy conocida en la comunidad científica, ya que muchos de ellos hicieron contribuciones significativas al campo de la física, de las matemáticas, de la hidráulica, etc. Sus nombres están asociados con ecuaciones, fórmulas e identidades como la ecuación de Bernoulli relacionada con la conservación de la energía para el flujo de fluidos, número de Bernoulli, polinomios de Bernoulli, técnica de la diferenciación parcial, ecuaciones diferenciales de Bernoulli, curvas trascendentales e isoperimetría, la espiral logarítmica, teorema de Bernoulli, ley de los grandes números, etc.

Los hermanos Jacob, Nicolaus y Johann Bernoulli, y el hijo de éste, Daniel Bernoulli, labraron el terreno de la física y las matemáticas generando con ello grandes aportaciones a la ciencia. Toca, en esa ocasión, rendir honores a Jacob, quien nació el 27 de diciembre de 1654, en la ciudad de Basilea, Suiza, considerada cuna de los matemáticos, pues ahí nació también Leonhard Euler, uno de los más prolíficos en las ciencias matemáticas.

Jacob comenzó estudiando teología en la universidad de Basilea por consejos de su padre, pero le pareció mucho más interesante resolver ecuaciones y encontrar variables desconocidas en las desigualdades. Fue así que decidió estudiar las matemáticas. Dominó no solamente estas ciencias exactas, sino también la física, la probabilidad y estadística, y cinco lenguas extranjeras: italiano, francés, griego, latín e inglés.

En 1671, al terminar su educación superior, viajó a Europa durante cuatro años. En Francia se familiarizó con la ciencia creada por René Descartes (1596–1650), luego fue a Italia y regresó a su tierra natal, donde impartió clases privadas. A partir de 1677, comenzó a guardar sus notas, producto de sus ideas y observaciones de carácter científico.

Con cinco idiomas bajo el brazo, pudo adquirir con más facilidad la ciencia de su época. En 1682, visitó Holanda, seguido de Inglaterra, donde conoció al científico experimental inglés Robert Hooke (1635–1703), conocido por la ley de elasticidad de Hooke; al físico e inventor holandés Robert Boyle (1627–1691), conocido por la ley de Boyle; y al físico matemático holandés Christiaan Huygens, inventor del reloj del péndulo. 

El intercambio científico con esos pensadores lo consolidó para ocupar el puesto de profesor de tiempo completo en la Universidad de Basilea. En 1683 comenzó a impartir física a estudiantes y tres años después fue nombrado profesor de física y matemáticas.

A partir de entonces, surgieron sus aportaciones más significativas:  en 1687, al leer las primeras memorias sobre el cálculo infinitesimal del alemán Leibniz (1646–1716), adquirió las herramientas de la derivada e integral que lo ayudaron a resolver una ecuación diferencial que describía una parábola semicúbica. Este problema fue establecido por Leibniz y Huygens, pero Jacob fue quien le dio una demostración formal, en 1690.

Las aportaciones de Jacob, sin embargo, no quedaron ahí. Al plantear el problema de la curva plana lemniscate (curva en forma de infinito) y resolver el problema de la curva braquistócrona (curva del descenso más rápido), el genio suizo contribuyó al origen del cálculo de variaciones. Investigó, además,la cicloide y la espiral logarítmica, a tal grado que pidió que en su tumba se le grabara aquella espiral.

El matemático suizo hizo también aportaciones relevantes a la teoría de series, particularmente sus famosos polinomios y números de Bernoulli. De la lectura del libro de Huygens, On Calculations in a Gambling, introdujo varios conceptos modernos a la teoría de la probabilidad y formuló la ley de los grandes números, muy usada en la probabilidad de hoy. De ese estudio preparó una monografía, que fue publicada póstumamente, en 1713, por su hermano Nicolaus y titulado El arte de los supuestos. Esta obra es un tratado sobre la teoría de la probabilidad, las estadísticas y su aplicación práctica. Ahí aparece la primera versión de su distribución, conocida como distribución combinatoria de Bernoulli.

En sus otros cuadernos científicos se pueden encontrar notas acerca de los experimentos sobre la determinación del centro de oscilación en los cuerpos y la resistencia de los cuerpos en diversas formas que se mueven como un líquido.

Como el lector puede notar, las ecuaciones y fórmulas proporcionadas por Jacob Bernoulli son obtenidas a partir del análisis de un problema concreto y real, problema que es descrito a través de la ecuación diferencial, de la distribución combinatoria de Bernoulli, etc. Aquí se demuestra una vez más que las matemáticas, por muy abstractas que sean, tienen una base real.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

El ser humano tiene la capacidad de obtener e interpretar la información que obtiene de su medio ambiente para generar una respuesta, en forma de movimiento.

El impacto social de los Beatles ha sido sumamente importante; en materia musical y de producción de sonido desataron una auténtica revolución, y ahora la inteligencia artificial nos acerca a lo que pudo haber sido.

A la naturaleza no le importa si los machos son atraídos hacia los machos o las hembras hacia las hembras. Es mas bien la ideología humana la que castiga estos comportamientos, argumentando que solo prohíbe lo que es “antinatural”.

Nuestras características físicas son resultado de la combinación de nuestros genes y entorno. Cada quien es distinto: tiene una combinación única de genes y ha sido moldeada por la realidad en que se desarrolla antes y después de nacer.

A pesar de todas las riquezas que posee África (y que aquí menciono), la gran mayoría de la población vive una situación muy deplorable, lo que representa una gran contradicción.

El comportamiento migratorio de los tiburones de Groenlandia aún es un misterio para la comunidad científica.

A pesar de que el cohete no podrá aterrizar en la luna, el Instituto de la UNAM consideró que sí se han alcanzado los propósitos de la misión Colmena, toda vez que han podido articular conocimientos tecnocientíficos y formación académica.

Por la relación comercial que tiene México con Estados Unidos, el 53.85 por ciento del café que se exporta de nuestro país tiene como destino Estados Unidos.

La importancia de su trabajo científico radicó en que se adelantaron a predecir lo que pasaría antes de la completa destrucción de la capa de ozono (O3).

“Para los mexicanos, el maíz está entrelazado con su vida, su historia y sus tradiciones; no es solo un cultivo, sino el centro de su identidad", Sin embargo, hoy el maíz no cubre la demanda nacional, entre otras deficiencias.

Las matemáticas, por muy abstractas que sean, tienen una base real.

A pesar de ser matemático, nunca estuvo interesado en los temas de moda de la época (física-matemática), tampoco en la geometría. Fue, por varias razones, único en la historia de la matemática.

El método obtenido por el discípulo de Platón dio nacimiento formal al cálculo infinitesimal e influyó significativamente en los matemáticos posteriores a Eudoxo.

Cavalieri y Torricelli, matemáticos que hicieron historia en su tiempo.

En nuestros días, los científicos discuten con gran preocupación el posible aumento, en las futuras generaciones, de enfermedades o males derivados del efecto ambiental catastrófico más grande después de la época de las postguerras.