Cargando, por favor espere...

Jacob Bernoulli, matemático fuera de serie
Las matemáticas, por muy abstractas que sean, tienen una base real.
Cargando...

La familia Bernoulli es muy conocida en la comunidad científica, ya que muchos de ellos hicieron contribuciones significativas al campo de la física, de las matemáticas, de la hidráulica, etc. Sus nombres están asociados con ecuaciones, fórmulas e identidades como la ecuación de Bernoulli relacionada con la conservación de la energía para el flujo de fluidos, número de Bernoulli, polinomios de Bernoulli, técnica de la diferenciación parcial, ecuaciones diferenciales de Bernoulli, curvas trascendentales e isoperimetría, la espiral logarítmica, teorema de Bernoulli, ley de los grandes números, etc.

Los hermanos Jacob, Nicolaus y Johann Bernoulli, y el hijo de éste, Daniel Bernoulli, labraron el terreno de la física y las matemáticas generando con ello grandes aportaciones a la ciencia. Toca, en esa ocasión, rendir honores a Jacob, quien nació el 27 de diciembre de 1654, en la ciudad de Basilea, Suiza, considerada cuna de los matemáticos, pues ahí nació también Leonhard Euler, uno de los más prolíficos en las ciencias matemáticas.

Jacob comenzó estudiando teología en la universidad de Basilea por consejos de su padre, pero le pareció mucho más interesante resolver ecuaciones y encontrar variables desconocidas en las desigualdades. Fue así que decidió estudiar las matemáticas. Dominó no solamente estas ciencias exactas, sino también la física, la probabilidad y estadística, y cinco lenguas extranjeras: italiano, francés, griego, latín e inglés.

En 1671, al terminar su educación superior, viajó a Europa durante cuatro años. En Francia se familiarizó con la ciencia creada por René Descartes (1596–1650), luego fue a Italia y regresó a su tierra natal, donde impartió clases privadas. A partir de 1677, comenzó a guardar sus notas, producto de sus ideas y observaciones de carácter científico.

Con cinco idiomas bajo el brazo, pudo adquirir con más facilidad la ciencia de su época. En 1682, visitó Holanda, seguido de Inglaterra, donde conoció al científico experimental inglés Robert Hooke (1635–1703), conocido por la ley de elasticidad de Hooke; al físico e inventor holandés Robert Boyle (1627–1691), conocido por la ley de Boyle; y al físico matemático holandés Christiaan Huygens, inventor del reloj del péndulo. 

El intercambio científico con esos pensadores lo consolidó para ocupar el puesto de profesor de tiempo completo en la Universidad de Basilea. En 1683 comenzó a impartir física a estudiantes y tres años después fue nombrado profesor de física y matemáticas.

A partir de entonces, surgieron sus aportaciones más significativas:  en 1687, al leer las primeras memorias sobre el cálculo infinitesimal del alemán Leibniz (1646–1716), adquirió las herramientas de la derivada e integral que lo ayudaron a resolver una ecuación diferencial que describía una parábola semicúbica. Este problema fue establecido por Leibniz y Huygens, pero Jacob fue quien le dio una demostración formal, en 1690.

Las aportaciones de Jacob, sin embargo, no quedaron ahí. Al plantear el problema de la curva plana lemniscate (curva en forma de infinito) y resolver el problema de la curva braquistócrona (curva del descenso más rápido), el genio suizo contribuyó al origen del cálculo de variaciones. Investigó, además,la cicloide y la espiral logarítmica, a tal grado que pidió que en su tumba se le grabara aquella espiral.

El matemático suizo hizo también aportaciones relevantes a la teoría de series, particularmente sus famosos polinomios y números de Bernoulli. De la lectura del libro de Huygens, On Calculations in a Gambling, introdujo varios conceptos modernos a la teoría de la probabilidad y formuló la ley de los grandes números, muy usada en la probabilidad de hoy. De ese estudio preparó una monografía, que fue publicada póstumamente, en 1713, por su hermano Nicolaus y titulado El arte de los supuestos. Esta obra es un tratado sobre la teoría de la probabilidad, las estadísticas y su aplicación práctica. Ahí aparece la primera versión de su distribución, conocida como distribución combinatoria de Bernoulli.

En sus otros cuadernos científicos se pueden encontrar notas acerca de los experimentos sobre la determinación del centro de oscilación en los cuerpos y la resistencia de los cuerpos en diversas formas que se mueven como un líquido.

Como el lector puede notar, las ecuaciones y fórmulas proporcionadas por Jacob Bernoulli son obtenidas a partir del análisis de un problema concreto y real, problema que es descrito a través de la ecuación diferencial, de la distribución combinatoria de Bernoulli, etc. Aquí se demuestra una vez más que las matemáticas, por muy abstractas que sean, tienen una base real.


Escrito por Romeo Pérez Ortiz

Doctor en Fisica y Matematicas por la Universidad Estatal de Lomonosov de Moscu, Rusia


Notas relacionadas

Los problemas de la humanidad se agudizarán; en primer lugar, por la falta de alimentos ya que, con suelos destruidos o empobrecidos.

Las consecuencias del calentamiento global antropogénico están ocurriendo con una rapidez mayor a la pronosticada por la comunidad científica.

La obra aplica de “forma magistral” el método de análisis marxista-leninista, que permite al autor pronosticar los eventos que se desarrollaron en años posteriores, en los que los principales países imperialistas del mundo buscan mantener su hegemonía.

Un tema que ha inquietado al hombre desde hace mucho tiempo es el del cálculo de áreas de terrenos accidentados para el cultivo.

“Estamos cerca de crear lo que se llama oncovacunas, vacunas contra el cáncer y medicamentos inmunomoduladores de nueva generación", afirmó el presidente de Rusia, Vladimir Putin.

La lucha por el control de los datos personales se traduce en la posibilidad de poder económico, político e ideológico. De manera permanente somos vigilados por empresas y funcionarios.

Fermat nunca publicó un artículo matemático, todos sus aportes eran mediante cartas personales, sin embargo sus conjeturas fueron importantes para el desarrollo matemático.

Un estudio dio a conocer la primera evidencia directa en imágenes de que los bebés reaccionan con expresiones faciales de manera diferente a varios olores y sabores mientras están en el útero.

Una consecuencia sorprendente del resultado BanachTarski, es demostrar que se puede particionar una bola del tamaño de la tierra, reordenar esta partición y obtener una bola del tamaño del sol.

Muchas de las enfermedades “del mundo moderno” (cáncer, diabetes, hipertensión, asma, demencia) son producto de los “malos hábitos” alimenticios y falta de ejercicio.

En nuestro país, el uso indiscriminado de fertilizantes químicos en la actividad agrícola se ha vuelto muy importante debido al empobrecimiento de los suelos.

El Centro Nacional de Investigaciones Científicas (CNRS) francés sostuvo que en plena selva amazónica descubrió una “extensa red de ciudades de dos mil 500 años de antigüedad”.

La participación de las mujeres en el desarrollo de las matemáticas ha sido escasa, comparada con la de los hombres

Los humanos, a diferencia de los animales, son enseñados en familias, escuelas y grupos humanos insertos en sociedades cambiantes en términos estructurales e ideológicos.

Este 14 de octubre ocurrirá un eclipse anular de sol, mismo que no se veía desde 1984. Para apreciarlo mejor, el IPN regalará más de 2 mil 500 lentes certificados en dos lugares. Te decimos dónde.