Cargando, por favor espere...

Más allá de los números naturales (I de II)
Para la antigua cultura griega, los números naturales podían tener dos realizaciones, una como elemento de medición (lo llamaban magnitud) y otra como elemento de conteo.
Cargando...

Para la antigua cultura griega, los números naturales podían tener dos realizaciones, una como elemento de medición (lo llamaban magnitud) y otra como elemento de conteo. En este último solo se consideraban a partir del 2; el 1 no era considerado número y el cero no existía. Para Aristóteles, estos números u objetos son concebidos en potencia, es decir, conjuntos infinitos que se iban generando uno tras otros, tanto como se quiera, no podían ser pensados en acto, o sea como un todo.

Esta idea del infinito perduró por más de dos mil años; toda la matemática creada en todo ese tiempo se realizó bajo la influencia aristotélica, después de los griegos, desde el Siglo XVII hasta bien avanzado el XIX, la existencia de los objetos matemáticos estaba ligada a algún objeto concreto visualizable o fenómeno físico. En ese sentido, hasta fines del Siglo XIX no era imaginable cómo un todo, el conjunto de los números naturales 0. 1, 2, 3,… ni mucho menos trabajado matemáticamente. Fue el ruso-alemán George Cantor quien, por primera vez, bajo una fundamentación estrictamente lógica, concibió el infinito actual, lo caracterizó y fue más allá de los números naturales, inventando un fascinante mundo abstracto que no tiene correlato con el mundo físico y concreto, estableciendo la génesis ontológica de la matemática actual.

Es sorprendente ver que esta mirada de Cantor vino a raíz de un problema concreto. En la década de 1860, en la Universidad de Halle (Alemania), el profesor Eduard Heine estaba investigando el problema de determinar si la descomposición en series de Fourier de una función periódica era única. Heine logró demostrar que, si la función no tiene saltos o discontinuidades, entonces la descomposición es única. Sin embargo, ¿qué pasa si este número de discontinuidades es infinito?, fue el problema que el profesor Heine dio a George Cantor en 1869 para su tesis doctoral.

En 1870, George Cantor obtuvo sus primeros resultados: la descomposición es única, siempre y cuando las discontinuidades estén distribuidas de una manera especial. Esta forma especial era compleja de expresar para Cantor, así que inventó una forma de hacerlo que llamó conjunto derivado (hoy día estudiado en los cursos de Topología) y que fue publicado en 1883. La definición fue la siguiente: Sea P un conjunto cualquiera de números, se llama conjunto derivado a la colección de todos los números que pueden aproximarse mediante sucesiones formales de elementos de P. Cantor lo denotó por . De tal forma que si P=Q (conjunto de números racionales) entonces Q´ = R (conjunto de los números reales). A pesar que la definición de está realizada con infinitos potenciales, el hecho de que Q´= R, nos induce a pensar en un infinito en acto. Por primera vez se construyó un infinito en acto concreto, iniciando un cambio conceptual arraigado en los matemáticos por más de veinte siglos.

George Cantor encontró conjuntos P, tal que su derivado , y el derivado de éste, P´´, y el del anterior P´´´…… hasta P∞, eran todos diferentes y no nulos; se hizo la pregunta ¿cuál es el derivado de P∞?

En noviembre 1882, George Cantor escribió a Richard Dedeking afirmando:

“Dios todopoderoso me ha concedido alcanzar las aclaraciones más notables e inesperadas en la teoría de conjuntos y en la teoría de números o más bien, que encontrara aquello que ha fermentado en mí durante años y que he buscado tanto tiempo”.

George Cantor había inventado un paraíso para los matemáticos, como decía David Hilbert, apareciendo ω= {0,1,2,3,…} y ω+1= {0,1,2,3..,ω} y así ω+2,ω+3,…., números que nos permiten contar más allá que los naturales; los llamó números ordinales. La principal característica de los números ordinales es:

Todo ordinal tiene un sucesor, por ejemplo, ω tiene como sucesor a ω+1= ω υ{ω}.

El primer ordinal de todos es el , su sucesor es el 1, y el sucesor de éste es el 2 y así sucesivamente, luego le sigue ω, luego ω +1 y así sucesivamente, todos ellos numerables. Sin embargo, estos conjuntos son los infinitos más pequeños que existen.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

El usuario otorga permisos amplios para usar su imagen, lo que facilita la creación de contenido Deepfake, capaz de imitar su apariencia y voz con gran precisión.

Cada 14 de marzo se celebra el a la Matemática. Esta fecha fue elegida en virtud de que hace alusión a 3.14, que es el valor aproximado del enigmático número Pi (π).

La tecnología hace posible que las ventas en línea lleguen a más personas, sin importar donde se encuentren; por lo que cada vez más usuarios de la red realizan compras a través de internet.

Esta sonda despegó el 15 de enero y tiene previsto alunizar en el Mare Crisium el 2 de marzo.

volviendo al ejemplo del futbol, las vacunas son el equivalente a jugar un partido amistoso a principio de temporada, solo nos preparan para los posibles escenarios de una “competencia real”.

Para muchos es normal que en la época de fin de año las temperaturas sean bajas. Esto se debe, en gran medida, a la inclinación de 23.5 grados del planeta con respecto a su eje, que va del polo norte al sur.

La Nochebuena era una flor predilecta para los aztecas, zapotecas, zoques, chontales y totonacas.

Generaciones nacen inmersas en las redes, mismas que onstituyen la forma predominante de relacionarse con los otros. Algunos factores que propician el ciberacoso son: la viralidad, la rapidez de propagación de las publicaciones y el anonimato del agresor.

“Las redes sociales en general son una amenaza para la salud mental de los menores”, declaró el alcalde de la ciudad de Nueva York, Eric Adams.

Desde el punto de vista filosófico, D’Álembert era partidario de la unidad del saber, proponía el progreso de la humanidad a través del desarrollo de la ciencia, unificadas por una filosofía desprendida de los mitos y creencias transcendentales.

El país no conseguirá la salud ecológica y humana con las buenas intenciones de la Semarnat, porque se necesita voluntad política, mayor presupuesto.

Las siete mil 700 millones de personas que hay en la Tierra, aunado al actual modelo de vida consumista y desenfrenado, aceleran las condiciones de cambio climático que estamos enfrentando, como el calor y el frío.

La Organización Panamericana de la Salud señala que entre 2015 y 2050 en América Latina, el 68% de las mujeres serán más propensas a padecer demencia que los hombres.

De acuerdo con las asociaciones opositoras, se trata de una ley centralista en tanto no garantiza el derecho a una participación ciudadana autónoma.

El famoso Axioma de elección juega un poco con la intuición humana, ya que demuestra que todo conjunto puede ser bien ordenado, aunque no se muestra cuál es ese orden.