Cargando, por favor espere...

Tlaixaxiliztli
En busca del número π (primera parte)
El hombre antiguo estuvo “muy cerca” de hallar el área del círculo. Sin embargo, como nos enseñaron en “las buenas escuelas”, el área del círculo con radio uno es un número irracional con un número infinito de dígitos que no son periódicos.


Este número irracional, como los demás números, surgió gracias al desarrollo económico de una sociedad en un determinado momento de la historia. Su conocimiento empírico comenzó cuando el hombre tuvo necesidad de calcular áreas o volúmenes de objetos curvilíneos, circulares o esféricos. En ese proceso de conocimiento, el hombre observó que, si relacionaba el perímetro de una circunferencia con su diámetro lograría encontrar el área de un círculo. Así fue como la práctica diaria le enseñó que la longitud de la circunferencia podía igualarse a tres veces la longitud del diámetro, más una cantidad muy pequeña de dígitos que se extendían indefinidamente.

En la búsqueda del área exacta del círculo, el hombre “se estrelló” con el problema de que no podía encontrar el último de esa serie de dígitos colocados después del punto decimal. Descubrió que no era posible encontrar el área exacta del círculo recurriendo solo a la geometría. Luchó incansablemente con el problema planteado, hasta que lo resolvió a finales del Siglo XIX, gracias al cálculo infinitesimal desarrollado por Isaac Newton, Pierre de Fermat, René Descartes y Gottfried Leibniz y a la teoría de conjuntos formalizada por el matemático alemán George Cantor.

La historia del número π, de acuerdo con el ingeniero químico Simón Reif Acherman, se divide en tres grandes períodos: el primero comienza en las antiguas civilizaciones sumeria, egipcia y china, que grabaron sus resultados en tablillas de arcilla y papiros, hasta el surgimiento del cálculo infinitesimal (mediados del Siglo XVII) con Fermat y Descartes; el segundo periodo comprende los aportes científicos y filosóficos de Newton y Leibniz; y el tercero y último periodo, abarca la mitad del Siglo XVIII hasta finales del XIX.

El conocimiento empírico egipcio del número π comenzó con las aproximaciones de hasta nueve dígitos, como lo muestra el papiro de Rhind: un valor aproximado de equivalente a 3.160493827. Pero la mejor aproximación al área del círculo se obtuvo en la cultura griega, con los matemáticos Eudoxo de Cnido y Arquímedes de Siracusa. Ellos se plantearon el problema de la cuadratura de la parábola y la cuadratura del círculo, es decir, el problema de encontrar el área de un segmento parabólico (región encerrada por una parábola y una línea recta) en un cuadrado, o encontrar el área de un círculo en un cuadrado.

Para resolver la cuadratura de la parábola y la del círculo, Eudoxo y Arquímedes emplearon el método por agotamiento o de exhaución y el de reducción al absurdo. Para la primera, comenzaron a dividir la región encerrada en una “infinidad” de triángulos cada vez más pequeños. Después sumaron el área de cada uno de los triángulos con el método de la progresión geométrica y encontraron el área del segmento parabólico. Para la segunda, Arquímedes construyó polígonos de lados 6, 12, 24, 48 y 96 dentro y fuera de la circunferencia y calculó el área de cada uno de los polígonos indicados. Al aumentar los lados de los polígonos, inscritos y circunscritos a la circunferencia de radio 1, Arquímedes, usando la ya conocida igualdad: donde P es el perímetro para cada lado n y D el diámetro del círculo, llegó al siguiente resultado: o lo que es lo mismo, a 3.140845<π<3.142857.

Como el lector ya observó, conforme el hombre iba perfeccionando sus métodos de investigación, también se acercaba más a la solución. Sin embargo, las condiciones materiales de su tiempo y el desarrollo de la matemática, todavía no daba el salto que se requería para encontrar el área exacta del círculo. En el Siglo II después de Cristo, el matemático Claudio Ptolomeo había mejorado la aproximación. Con un polígono de 120 lados, inscrito en una circunferencia, construyó una tabla de las cuerdas de un círculo subtendidas por arcos de medio grado, un grado y así sucesivamente, hasta arcos de 180 grados. Luego, usando el método de fracciones sexagesimales, pudo encontrar la aproximación: cuya expresión en decimales es 3.1416666667.

El hombre antiguo estuvo “muy cerca” de hallar el área del círculo. Sin embargo, como nos enseñaron en “las buenas escuelas”, el área del círculo con radio uno es un número irracional con un número infinito de dígitos que no son periódicos. Era imposible, pues, encontrar el valor de π con las herramientas matemáticas conocidas hasta ese momento.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

sem.jpg

El uso de semillas mejoradas es una alternativa que garantiza la rentabilidad de las cosechas y la seguridad alimentaria, pero esa tecnología no es accesible para los 6.8 millones de personas que se dedican al sector agrícola.

Nave espacial Voyager 1 restablece comunicación con la Tierra

El equipo de la misión señaló que continúa trabajando para mantener operativa a la nave Voyager 1

Cirujano chino realiza primera operación a distancia desde Roma hasta Beijing

Cabe destacar que el proceso fue vigilado por médicos presentes en el quirófano de Beijing para garantizar la seguridad en todo momento.

Los Sistemas de Información Geográfica dentro de la agricultura moderna

A pesar de que esta tecnología no fue creada específicamente para su aplicación en la agricultura, en la actualidad es indispensable para optimizar y hacer más eficiente el proceso de producción agrícola.

ciencia.jpg

En lo que va de 2019 México ha registrado 74 mil 277 casos de dengue, cifra que lo ubica en el cuarto lugar de América Latina, solo después de Brasil (un millón 958 mil 31), Nicaragua (94 mil 513) y Colombia (84 mil 644).

ciencia.jpg

Los virus son entidades fascinantes por el alto grado de mutación en sus estrategias evolutivas, de las que quizás en algún futuro podamos aprender más.

Recibe ser humano primer riñón de cerdo modificado

Por primera vez en la historia, médicos trasplantaron un riñón genéticamente modificado de un cerdo para un ser humano vivo.

Más de 600 mil robots nuevos habrá en 2024

La Federación Internacional de Robótica proyecta que seguirá creciendo la demanda de robots industriales con la instalación de 600 mil robots nuevos en todo el mundo para el año 2024.

mar.jpg

La MIA-F1 reconoce afectaciones de gran magnitud a los ecosistemas de los primeros tres tramos.

luna.jpg

Julio Verne nació en Nantes, Francia, en 1828. Fue un brillante escritor y divulgador de la ciencia.

matem.jpg

Aunque las ideas iniciales fueron concebidas por Bernhard Riemann y Richard Dedekind, se reconoce que el matemático que consolidó y sentó las bases para la axiomatización de la teoría de conjuntos fue el ruso George Cantor.

Promueven tendencias de emprendimiento 2024

La tecnología hace posible que las ventas en línea lleguen a más personas, sin importar donde se encuentren; por lo que cada vez más usuarios de la red realizan compras a través de internet.

adn.jpg

El sistema CRISPR/Cas9 es considerado como el método más simple, versátil y preciso de manipulación genética.

Tesla presenta su primer robot humanoide

El costo estimado para adquirir este asistente autónomo oscila entre 20 mil y 30 mil dólares.

¿Qué es la matemática filosófica? Parte II

Es posible crear una matemática filosófica desde el hacer de un matemático que sea realmente relevante y visionaria. Debe de ser una reflexión humanizante, pero a la vez esclarecedora del mundo de las ideas formales.