Cargando, por favor espere...
Este número irracional, como los demás números, surgió gracias al desarrollo económico de una sociedad en un determinado momento de la historia. Su conocimiento empírico comenzó cuando el hombre tuvo necesidad de calcular áreas o volúmenes de objetos curvilíneos, circulares o esféricos. En ese proceso de conocimiento, el hombre observó que, si relacionaba el perímetro de una circunferencia con su diámetro lograría encontrar el área de un círculo. Así fue como la práctica diaria le enseñó que la longitud de la circunferencia podía igualarse a tres veces la longitud del diámetro, más una cantidad muy pequeña de dígitos que se extendían indefinidamente.
En la búsqueda del área exacta del círculo, el hombre “se estrelló” con el problema de que no podía encontrar el último de esa serie de dígitos colocados después del punto decimal. Descubrió que no era posible encontrar el área exacta del círculo recurriendo solo a la geometría. Luchó incansablemente con el problema planteado, hasta que lo resolvió a finales del Siglo XIX, gracias al cálculo infinitesimal desarrollado por Isaac Newton, Pierre de Fermat, René Descartes y Gottfried Leibniz y a la teoría de conjuntos formalizada por el matemático alemán George Cantor.
La historia del número π, de acuerdo con el ingeniero químico Simón Reif Acherman, se divide en tres grandes períodos: el primero comienza en las antiguas civilizaciones sumeria, egipcia y china, que grabaron sus resultados en tablillas de arcilla y papiros, hasta el surgimiento del cálculo infinitesimal (mediados del Siglo XVII) con Fermat y Descartes; el segundo periodo comprende los aportes científicos y filosóficos de Newton y Leibniz; y el tercero y último periodo, abarca la mitad del Siglo XVIII hasta finales del XIX.
El conocimiento empírico egipcio del número π comenzó con las aproximaciones de hasta nueve dígitos, como lo muestra el papiro de Rhind: un valor aproximado de equivalente a 3.160493827. Pero la mejor aproximación al área del círculo se obtuvo en la cultura griega, con los matemáticos Eudoxo de Cnido y Arquímedes de Siracusa. Ellos se plantearon el problema de la cuadratura de la parábola y la cuadratura del círculo, es decir, el problema de encontrar el área de un segmento parabólico (región encerrada por una parábola y una línea recta) en un cuadrado, o encontrar el área de un círculo en un cuadrado.
Para resolver la cuadratura de la parábola y la del círculo, Eudoxo y Arquímedes emplearon el método por agotamiento o de exhaución y el de reducción al absurdo. Para la primera, comenzaron a dividir la región encerrada en una “infinidad” de triángulos cada vez más pequeños. Después sumaron el área de cada uno de los triángulos con el método de la progresión geométrica y encontraron el área del segmento parabólico. Para la segunda, Arquímedes construyó polígonos de lados 6, 12, 24, 48 y 96 dentro y fuera de la circunferencia y calculó el área de cada uno de los polígonos indicados. Al aumentar los lados de los polígonos, inscritos y circunscritos a la circunferencia de radio 1, Arquímedes, usando la ya conocida igualdad: donde P es el perímetro para cada lado n y D el diámetro del círculo, llegó al siguiente resultado: o lo que es lo mismo, a 3.140845<π<3.142857.
Como el lector ya observó, conforme el hombre iba perfeccionando sus métodos de investigación, también se acercaba más a la solución. Sin embargo, las condiciones materiales de su tiempo y el desarrollo de la matemática, todavía no daba el salto que se requería para encontrar el área exacta del círculo. En el Siglo II después de Cristo, el matemático Claudio Ptolomeo había mejorado la aproximación. Con un polígono de 120 lados, inscrito en una circunferencia, construyó una tabla de las cuerdas de un círculo subtendidas por arcos de medio grado, un grado y así sucesivamente, hasta arcos de 180 grados. Luego, usando el método de fracciones sexagesimales, pudo encontrar la aproximación: cuya expresión en decimales es 3.1416666667.
El hombre antiguo estuvo “muy cerca” de hallar el área del círculo. Sin embargo, como nos enseñaron en “las buenas escuelas”, el área del círculo con radio uno es un número irracional con un número infinito de dígitos que no son periódicos. Era imposible, pues, encontrar el valor de π con las herramientas matemáticas conocidas hasta ese momento.
En las siguientes líneas podrán leer sobre el olivo, una de las plantas más representativas que se mencionan en La Biblia. Su primera mención aparece durante el Génesis 8:11.
El maestro de hoy, no todos desde luego, pero sí la mayoría, ya no enseña a su alumno a razonar y analizar.
La filosofía no es un adorno, merece que se le reconozca su capacidad de estudio de la realidad, su utilidad en el más amplio sentido de la palabra, pues la humanidad la necesita para manifestarse como tal. Olvidar a la filosofía es condenarnos a las sombras...
No dormir provoca que el cerebro elimine una cantidad significativa de neuronas, así como una perdida significativa de conexiones sinápticas; lo peor, la recuperación del sueño sería incapaz de revertir el daño.
En nuestro país, el uso indiscriminado de fertilizantes químicos en la actividad agrícola se ha vuelto muy importante debido al empobrecimiento de los suelos.
El estudio de Venus en la década de 1960 alertó a la comunidad científica sobre las consecuencias ambientales por el aumento de dióxido de carbono (CO2) en la atmósfera terrestre.
Al igual que todos los virus de ARN, los coronavirus tienden a mutar de manera muy frecuente.
Por primera vez en la historia, médicos trasplantaron un riñón genéticamente modificado de un cerdo para un ser humano vivo.
Gracias al estudio y observación del mundo, sabemos con precisión que la naturaleza está llena de comportamientos homosexuales, desde los organismos más pequeños hasta los grandes mamíferos.
Para que el deportista cumpla sus objetivos físicos debe considerar varias variables. Aquí explicamos la hipertrofia muscular, puesto que la población que realiza deporte casi siempre busca una buena imagen física.
Esta red impulsará la creación de ciudades inteligentes y permitirá realizar cirugías a distancia
“Con esta investigación buscan una solución a la adulteración, que con el paso del tiempo se ha vuelto más sostificada, por lo que los procedimientos analíticos también de ser cada vez mejores”.
Uno de los grandes matemáticos con espíritu de poeta fue el inglés James Joseph Sylvester, quien fue dotado de una extraordinaria intuición matemática y de una gran sensibilidad poética, ya que logró conectar las ideas matemáticas con la poesía.
Los estafadores ingresan a la información personal del usuario, roban datos bancarios y utilizan la dirección de correo para lanzar ataques a otros contactos.
La imagen viral que vimos en redes sociales captada por el el telescopio espacial “James Webb” nos muestra cómo se veía una porción del universo hace cuatro mil 600 millones de años.
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.