Cargando, por favor espere...
Este número irracional, como los demás números, surgió gracias al desarrollo económico de una sociedad en un determinado momento de la historia. Su conocimiento empírico comenzó cuando el hombre tuvo necesidad de calcular áreas o volúmenes de objetos curvilíneos, circulares o esféricos. En ese proceso de conocimiento, el hombre observó que, si relacionaba el perímetro de una circunferencia con su diámetro lograría encontrar el área de un círculo. Así fue como la práctica diaria le enseñó que la longitud de la circunferencia podía igualarse a tres veces la longitud del diámetro, más una cantidad muy pequeña de dígitos que se extendían indefinidamente.
En la búsqueda del área exacta del círculo, el hombre “se estrelló” con el problema de que no podía encontrar el último de esa serie de dígitos colocados después del punto decimal. Descubrió que no era posible encontrar el área exacta del círculo recurriendo solo a la geometría. Luchó incansablemente con el problema planteado, hasta que lo resolvió a finales del Siglo XIX, gracias al cálculo infinitesimal desarrollado por Isaac Newton, Pierre de Fermat, René Descartes y Gottfried Leibniz y a la teoría de conjuntos formalizada por el matemático alemán George Cantor.
La historia del número π, de acuerdo con el ingeniero químico Simón Reif Acherman, se divide en tres grandes períodos: el primero comienza en las antiguas civilizaciones sumeria, egipcia y china, que grabaron sus resultados en tablillas de arcilla y papiros, hasta el surgimiento del cálculo infinitesimal (mediados del Siglo XVII) con Fermat y Descartes; el segundo periodo comprende los aportes científicos y filosóficos de Newton y Leibniz; y el tercero y último periodo, abarca la mitad del Siglo XVIII hasta finales del XIX.
El conocimiento empírico egipcio del número π comenzó con las aproximaciones de hasta nueve dígitos, como lo muestra el papiro de Rhind: un valor aproximado de equivalente a 3.160493827. Pero la mejor aproximación al área del círculo se obtuvo en la cultura griega, con los matemáticos Eudoxo de Cnido y Arquímedes de Siracusa. Ellos se plantearon el problema de la cuadratura de la parábola y la cuadratura del círculo, es decir, el problema de encontrar el área de un segmento parabólico (región encerrada por una parábola y una línea recta) en un cuadrado, o encontrar el área de un círculo en un cuadrado.
Para resolver la cuadratura de la parábola y la del círculo, Eudoxo y Arquímedes emplearon el método por agotamiento o de exhaución y el de reducción al absurdo. Para la primera, comenzaron a dividir la región encerrada en una “infinidad” de triángulos cada vez más pequeños. Después sumaron el área de cada uno de los triángulos con el método de la progresión geométrica y encontraron el área del segmento parabólico. Para la segunda, Arquímedes construyó polígonos de lados 6, 12, 24, 48 y 96 dentro y fuera de la circunferencia y calculó el área de cada uno de los polígonos indicados. Al aumentar los lados de los polígonos, inscritos y circunscritos a la circunferencia de radio 1, Arquímedes, usando la ya conocida igualdad: donde P es el perímetro para cada lado n y D el diámetro del círculo, llegó al siguiente resultado: o lo que es lo mismo, a 3.140845<π<3.142857.
Como el lector ya observó, conforme el hombre iba perfeccionando sus métodos de investigación, también se acercaba más a la solución. Sin embargo, las condiciones materiales de su tiempo y el desarrollo de la matemática, todavía no daba el salto que se requería para encontrar el área exacta del círculo. En el Siglo II después de Cristo, el matemático Claudio Ptolomeo había mejorado la aproximación. Con un polígono de 120 lados, inscrito en una circunferencia, construyó una tabla de las cuerdas de un círculo subtendidas por arcos de medio grado, un grado y así sucesivamente, hasta arcos de 180 grados. Luego, usando el método de fracciones sexagesimales, pudo encontrar la aproximación: cuya expresión en decimales es 3.1416666667.
El hombre antiguo estuvo “muy cerca” de hallar el área del círculo. Sin embargo, como nos enseñaron en “las buenas escuelas”, el área del círculo con radio uno es un número irracional con un número infinito de dígitos que no son periódicos. Era imposible, pues, encontrar el valor de π con las herramientas matemáticas conocidas hasta ese momento.
Así fue como nacieron las nuevas geometrías, que describen con más exactitud el universo donde vivimos, sin omitir y rechazar a la geometría euclidiana.
En nuestra época, los alimentos se conservan mejor en refrigeración o en envases.
Gran parte del problema ecológico está resuelto hoy día. ¿Qué falta? La ciencia tiene la razón, pero ahora reina la irracionalidad. ¿Quién debe parar esta locura? Los que la sufren. La gran mayoría no tiene consciencia de esto.
Fermat nunca publicó un artículo matemático, todos sus aportes eran mediante cartas personales, sin embargo sus conjeturas fueron importantes para el desarrollo matemático.
Se observaron más microplásticos en los polvos atmosféricos cerca de los centros industriales, comerciales y urbanos como: Tlalnepantla, Iztapalapa y La Merced.
Euclides concentró todo el conocimiento matemático creado por los filósofos y matemáticos anteriores a él, entre ellos Eudoxo y Aristóteles.
La Organización Panamericana de la Salud señala que entre 2015 y 2050 en América Latina, el 68% de las mujeres serán más propensas a padecer demencia que los hombres.
Esta herramienta prescinde de las cuerdas vocales y restaura el habla ofreciendo esperanza para pacientes con trastornos de la voz.
Las probabilidades de que cause un daño devastador aumentan.
Ramón Picarte siempre pensó que la matemática debería ser un aporte para sacar a las personas de la pobreza; con esa idea organizó e impulsó diferentes sociedades cooperativas de artesanos y trabajadores de Santiago.
Desde hace más de un par de siglos el electorado estadounidense está dividido en tercios: uno republicano inamovible, otro demócrata igualmente invariable y otro 33 por ciento inerte.
El desarrollo de la sociedad planteó nuevos retos que propiciaron la creación de nuevas herramientas, que ayudaron a encontrar el área exacta de un círculo de radio uno.
El agua es esencial en la generación de imágenes por IA debido al funcionamiento de los centros de datos.
Hace alrededor de 100 mil años se hicieron las primeras modificaciones a algunas herramientas que permitieron la sobrevivencia, y para lograrlo el lenguaje numérico fue fundamental.
La Secretaría de Salud ya “estudia a los contactos del caso y se atiende al paciente. El diagnóstico aún no es definitivo".
Invex y Actinver sustituyen a CIBanco tras acusaciones de lavado de dinero
El PACIC, otro fracaso que la 4T no admite
México al borde del apagón: reserva eléctrica cae a nivel de emergencia
Tabasco, Campeche y Zacatecas lideran la pérdida de empleos
Tempra, jarabe contaminado activa alerta de Cofepris
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.