Cargando, por favor espere...
En su disertación Sobre la hipótesis en la que subyacen los fundamentos de la geometría (1854), dicha en presencia de su asesor de tesis Carl Gauss, el matemático alemán Bernhard Riemann expuso los fundamentos de una nueva geometría que hoy es conocida como elíptica o riemanniana. En ese trabajo explicó su teoría del espacio curvo y que debió crear una herramienta conocida como variedad n dimensional para poder estudiar la curvatura de una superficie cualquiera de dimensión mayor o igual a 2. Sus resultados ayudaron a Albert Einstein a comprender la estructura geométrica del universo.
El estudio del espacio curvo de Riemann comienza con el análisis de las propiedades de la superficie de una esfera que se halla en un espacio de tres dimensiones, pero cuya superficie es de dimensión 2, es decir, una variedad 2-dimensional. La curvatura de esta superficie, así como la de otras, por ejemplo, una lámpara, se define casi de la misma forma que la curvatura de una curva en un plano euclidiano, con excepción de que las rectas (en forma de curvas) trazadas sobre las superficies tienen diferentes direcciones. Por eso la curvatura en un punto de una superficie se define como el producto de las curvaturas mayor y menor de todas las líneas que pasan por un punto fijo de la superficie. La curvatura de la superficie del planeta Tierra, por ejemplo, es positiva, ya que las curvaturas mayor y menor tienen el mismo signo, mientras que una superficie de curvatura negativa sería una silla de montar, ya que las curvaturas mayor y menor tienen signos diferentes. Estas curvaturas positivas o negativas han ayudado a los matemáticos a caracterizar dos tipos de geometrías no euclidianas: la elíptica de Riemann, con curvatura positiva y la hiperbólica de Lobachevski-Bolyai, con curvatura negativa. Además de estas caracterizaciones, Riemann agregó otra: la curvatura cero, correspondiente al espacio euclidiano.
Para continuar es necesario decir que las líneas en una superficie esférica son círculos máximos (latitud y longitud), que sirven de referencia para caracterizar las geodésicas, definidas como el camino de la distancia más corta entre dos puntos. Por ejemplo, en un espacio plano, un segmento de línea recta es considerado geodésica, mientras que en una esfera una geodésica es un arco de un círculo máximo como la ruta que siguen los aviones transoceánicos. En términos matemáticos, Riemann demostró que las propiedades básicas de un espacio curvo están determinadas por la fórmula de la distancia diferencial (ds)2=(dx)2+(dy)2+(dz)2, equivalente a la que se obtiene en un espacio euclidiano. Con la ayuda de esta distancia, definida cercanamente alrededor de un punto, Riemann demostró que las geodésicas son, efectivamente, las que tienen la distancia mínima entre dos puntos. Con esta aportación, el matemático alemán trazó redes geodésicas de espacios de dimensión mayor a tres y demostró que las curvaturas de dichos espacios adquieren signos negativos o positivos, comprobando, de esta manera, el carácter curvo de los espacios considerados.
Así nació lo que hoy conocemos como el espacio curvo de Riemann que contribuyó a la generalización de la Teoría de la Relatividad del físico Albert Einstein. Así como el matemático alemán encontró la curvatura de un espacio curvo, Einstein hizo lo mismo con la estructura del universo donde habitamos, al demostrar que es también un espacio curvo, y al agregar la variable tiempo al espacio tridimensional demostró que el espacio-tiempo adquiere la curvatura positiva. Demostró además que esta curvatura está condicionada por la masa de la materia: que, a mayor masa, mayor curvatura y que a menor masa, menor curvatura; que un cuerpo con masa menor se mueve necesariamente en la depresión ocasionada por el cuerpo de masa mayor sin que lleguen a chocar ambos cuerpos.
La generalización matemática realizada por Riemann sobre el concepto del espacio curvo, originado del estudio de la superficie terrestre, sobre la que caminamos diariamente, ha permitido al hombre comprender la estructura del universo. Se comprueba una vez más que las matemáticas basadas en la realidad física describen a ésta con mayor exactitud o puntualidad.
Hasta el último centavo del dinero destinado a fomentar el trabajo científico es arrancado para satisfacer los intereses más oscuros de la “Cuarta Transformación” (4T).
Si las personas se pierden el eclipse solar que ocurrirá este 8 de abril, tendrán que esperar por lo menos 30 años para que este fenómeno vuelva a suceder con las mismas características.
Los problemas personales no afectaron su brillante carrera académica; su jornada incluía largas horas de concentración.
El ChatGPT funciona como un programa que responde preguntas, genera texto y sostiene charlas, simulando una conversación real entre personas. Es muy útil, sin embargo, también tiene algunas limitaciones.
El FHI recomienda no obstante guardar la vacuna de J&J por si fuera necesario usarla en una situación en la que el contagio aumente de forma dramática en Noruega.
Aunque las ideas iniciales fueron concebidas por Bernhard Riemann y Richard Dedekind, se reconoce que el matemático que consolidó y sentó las bases para la axiomatización de la teoría de conjuntos fue el ruso George Cantor.
En contraste, algunas ocupaciones que experimentarán un crecimiento notable son las que están relacionadas con la tecnología.
Estableció formalmente la continuidad de la recta real, definiendo un número real por medio de un dispositivo llamado cortadura.
El Coahuilasaurus lipani destacó por su hocico corto y profundo.
Este gran matemático y astrónomo de la antigüedad fue capaz de medir la distancia de la Tierra a la Luna con una precisión importante.
¿Realmente son nocivas para el ecosistema? Un ambientalista dirá: “sí, porque desplazan especies nativas”. Sin embargo, ciertas necesidades se satisfacen mejor con especies exóticas que con nativas, por lo que es necesario asumir riesgos.
“El financiamiento es la columna vertebral de un sistema nacional de ciencia, tecnología e innovación. Desde aquí se aplican las políticas públicas, se incentiva o se corrige".
Con la muerte de Arquímedes se inicia el ocaso de los griegos, en el año 146 a.C. los romanos invadieron Cartago y el Mediterráneo, menos Egipto.
Aunque la pérdida de cola en los humanos ha sido objeto de diferentes teorías evolutivas, hasta hace unos días era un misterio sin resolver.
Los hallazgos sugieren un movimiento continuo hacia el oeste a lo largo de millones de años, lo que ha llevado a un refinamiento de la teoría de la tectónica de placas.
Países de la CEI dejarán de usar el dólar en 2025
Roberto Moreno desmiente despido del Sistema Nacional Anticorrupción
Congreso exige informe al alcalde de BJ por abusos en operativo
Israel intensifica operativos en Cisjordania tras 'atentado'
Seguridad vial en crisis: urgen financiamiento para reducir accidentes
En 2025 habrá cinco olas de calor, pronostica SMN
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.