Cargando, por favor espere...
En su disertación Sobre la hipótesis en la que subyacen los fundamentos de la geometría (1854), dicha en presencia de su asesor de tesis Carl Gauss, el matemático alemán Bernhard Riemann expuso los fundamentos de una nueva geometría que hoy es conocida como elíptica o riemanniana. En ese trabajo explicó su teoría del espacio curvo y que debió crear una herramienta conocida como variedad n dimensional para poder estudiar la curvatura de una superficie cualquiera de dimensión mayor o igual a 2. Sus resultados ayudaron a Albert Einstein a comprender la estructura geométrica del universo.
El estudio del espacio curvo de Riemann comienza con el análisis de las propiedades de la superficie de una esfera que se halla en un espacio de tres dimensiones, pero cuya superficie es de dimensión 2, es decir, una variedad 2-dimensional. La curvatura de esta superficie, así como la de otras, por ejemplo, una lámpara, se define casi de la misma forma que la curvatura de una curva en un plano euclidiano, con excepción de que las rectas (en forma de curvas) trazadas sobre las superficies tienen diferentes direcciones. Por eso la curvatura en un punto de una superficie se define como el producto de las curvaturas mayor y menor de todas las líneas que pasan por un punto fijo de la superficie. La curvatura de la superficie del planeta Tierra, por ejemplo, es positiva, ya que las curvaturas mayor y menor tienen el mismo signo, mientras que una superficie de curvatura negativa sería una silla de montar, ya que las curvaturas mayor y menor tienen signos diferentes. Estas curvaturas positivas o negativas han ayudado a los matemáticos a caracterizar dos tipos de geometrías no euclidianas: la elíptica de Riemann, con curvatura positiva y la hiperbólica de Lobachevski-Bolyai, con curvatura negativa. Además de estas caracterizaciones, Riemann agregó otra: la curvatura cero, correspondiente al espacio euclidiano.
Para continuar es necesario decir que las líneas en una superficie esférica son círculos máximos (latitud y longitud), que sirven de referencia para caracterizar las geodésicas, definidas como el camino de la distancia más corta entre dos puntos. Por ejemplo, en un espacio plano, un segmento de línea recta es considerado geodésica, mientras que en una esfera una geodésica es un arco de un círculo máximo como la ruta que siguen los aviones transoceánicos. En términos matemáticos, Riemann demostró que las propiedades básicas de un espacio curvo están determinadas por la fórmula de la distancia diferencial (ds)2=(dx)2+(dy)2+(dz)2, equivalente a la que se obtiene en un espacio euclidiano. Con la ayuda de esta distancia, definida cercanamente alrededor de un punto, Riemann demostró que las geodésicas son, efectivamente, las que tienen la distancia mínima entre dos puntos. Con esta aportación, el matemático alemán trazó redes geodésicas de espacios de dimensión mayor a tres y demostró que las curvaturas de dichos espacios adquieren signos negativos o positivos, comprobando, de esta manera, el carácter curvo de los espacios considerados.
Así nació lo que hoy conocemos como el espacio curvo de Riemann que contribuyó a la generalización de la Teoría de la Relatividad del físico Albert Einstein. Así como el matemático alemán encontró la curvatura de un espacio curvo, Einstein hizo lo mismo con la estructura del universo donde habitamos, al demostrar que es también un espacio curvo, y al agregar la variable tiempo al espacio tridimensional demostró que el espacio-tiempo adquiere la curvatura positiva. Demostró además que esta curvatura está condicionada por la masa de la materia: que, a mayor masa, mayor curvatura y que a menor masa, menor curvatura; que un cuerpo con masa menor se mueve necesariamente en la depresión ocasionada por el cuerpo de masa mayor sin que lleguen a chocar ambos cuerpos.
La generalización matemática realizada por Riemann sobre el concepto del espacio curvo, originado del estudio de la superficie terrestre, sobre la que caminamos diariamente, ha permitido al hombre comprender la estructura del universo. Se comprueba una vez más que las matemáticas basadas en la realidad física describen a ésta con mayor exactitud o puntualidad.
Los modos del pensamiento matemático influyen en su hacer, el Siglo XX ha sido testigo de al menos dos formas de este hacer, con marcada influencia ideológica.
Entre los hallazgos se identificaron decenas de moluscos, tres peces y un camarón, además de una enigmática criatura que desconcertó a los científicos.
Si existen o no está sujeto a lo que concebimos como realidad, misma que es relativa, existe una realidad capturada por nuestros sentidos y una realidad inventada que sólo existe conceptualmente en la mente humana.
El desarrollo de la matemática en la actualidad es esencialmente influenciado por la escuela formalista, propuesta por uno de los últimos universalistas de la matemática, el alemán David Hilbert.
La importancia de su trabajo científico radicó en que se adelantaron a predecir lo que pasaría antes de la completa destrucción de la capa de ozono (O3).
Evariste Galois fue uno de los grandes genios de la humanidad y el matemático más joven de la historia matemática.
Este miércoles, la Ciudad de México fue reconocida como la ciudad con más puntos conectados a internet en el mundo, superando incluso a Moscú, Rusia. En contraste, también ostenta el primer lugar en mayor desigualdad.
Estos datos se obtienen de las observaciones que realiza la Conagua en las estaciones climatológicas.
Aunque las ideas iniciales fueron concebidas por Bernhard Riemann y Richard Dedekind, se reconoce que el matemático que consolidó y sentó las bases para la axiomatización de la teoría de conjuntos fue el ruso George Cantor.
Sirvan estos dos ejemplos para que los estudiantes mexicanos despierten su interés por el desarrollo histórico de las fórmulas matemáticas.
Al igual que todos los virus de ARN, los coronavirus tienden a mutar de manera muy frecuente.
Aquí te explico por qué es muy importante y necesario proporcionar apoyos económicos y de capacitación a los pequeños productores, ya que los pocos nutrientes afectan la rentabilidad del cultivo y, por ende, al campo mexicano.
Hipatia era tan famosa que se convirtió en consejera de políticos, eclesiásticos y aristócratas; sin embargo, esta influencia social y política finalmente causó su trágica muerte.
Así como un deportista ama su actividad, lo encuentra entretenido, le gusta y goza, de igual manera un matemático, con sus objetos de estudio, ama intrínsecamente la disciplina, muchas veces sin esperar utilidad.
A partir de este primero de diciembre, dispositivos como Winko, Iphone, ZTE dejarán de ser compatibles con la aplicación de WhatsApp.
Cierran avenida Izazaga; comerciantes exigen a Ebrad que los deje trabajar
Congreso de la CDMX recibe el PEF 2025; habrá aumentos a las 16 alcaldías
Por derroche, en Guanajuato suspenden Fideicomiso
No desparece en el Congreso de la CDMX la moción suspensiva
Aumentarán impuestos para gasolina, refresco y cigarros; IEPS
Policías se enfrentan a comerciantes en villa navideña
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.