Cargando, por favor espere...

Tlaixaxiliztli
Espacio curvo de Riemann (II de III)
Einstein hizo lo mismo con la estructura del universo donde habitamos, al demostrar que es también un espacio curvo.


En su disertación Sobre la hipótesis en la que subyacen los fundamentos de la geometría (1854), dicha en presencia de su asesor de tesis Carl Gauss, el matemático alemán Bernhard Riemann expuso los fundamentos de una nueva geometría que hoy es conocida como elíptica o riemanniana. En ese trabajo explicó su teoría del espacio curvo y que debió crear una herramienta conocida como variedad n dimensional para poder estudiar la curvatura de una superficie cualquiera de dimensión mayor o igual a 2. Sus resultados ayudaron a Albert Einstein a comprender la estructura geométrica del universo.

El estudio del espacio curvo de Riemann comienza con el análisis de las propiedades de la superficie de una esfera que se halla en un espacio de tres dimensiones, pero cuya superficie es de dimensión 2, es decir, una variedad 2-dimensional. La curvatura de esta superficie, así como la de otras, por ejemplo, una lámpara, se define casi de la misma forma que la curvatura de una curva en un plano euclidiano, con excepción de que las rectas (en forma de curvas) trazadas sobre las superficies tienen diferentes direcciones. Por eso la curvatura en un punto de una superficie se define como el producto de las curvaturas mayor y menor de todas las líneas que pasan por un punto fijo de la superficie. La curvatura de la superficie del planeta Tierra, por ejemplo, es positiva, ya que las curvaturas mayor y menor tienen el mismo signo, mientras que una superficie de curvatura negativa sería una silla de montar, ya que las curvaturas mayor y menor tienen signos diferentes. Estas curvaturas positivas o negativas han ayudado a los matemáticos a caracterizar dos tipos de geometrías no euclidianas: la elíptica de Riemann, con curvatura positiva y la hiperbólica de Lobachevski-Bolyai, con curvatura negativa. Además de estas caracterizaciones, Riemann agregó otra: la curvatura cero, correspondiente al espacio euclidiano.

Para continuar es necesario decir que las líneas en una superficie esférica son círculos máximos (latitud y longitud), que sirven de referencia para caracterizar las geodésicas, definidas como el camino de la distancia más corta entre dos puntos. Por ejemplo, en un espacio plano, un segmento de línea recta es considerado geodésica, mientras que en una esfera una geodésica es un arco de un círculo máximo como la ruta que siguen los aviones transoceánicos. En términos matemáticos, Riemann demostró que las propiedades básicas de un espacio curvo están determinadas por la fórmula de la distancia diferencial (ds)2=(dx)2+(dy)2+(dz)2, equivalente a la que se obtiene en un espacio euclidiano. Con la ayuda de esta distancia, definida cercanamente alrededor de un punto, Riemann demostró que las geodésicas son, efectivamente, las que tienen la distancia mínima entre dos puntos. Con esta aportación, el matemático alemán trazó redes geodésicas de espacios de dimensión mayor a tres y demostró que las curvaturas de dichos espacios adquieren signos negativos o positivos, comprobando, de esta manera, el carácter curvo de los espacios considerados.

Así nació lo que hoy conocemos como el espacio curvo de Riemann que contribuyó a la generalización de la Teoría de la Relatividad del físico Albert Einstein. Así como el matemático alemán encontró la curvatura de un espacio curvo, Einstein hizo lo mismo con la estructura del universo donde habitamos, al demostrar que es también un espacio curvo, y al agregar la variable tiempo al espacio tridimensional demostró que el espacio-tiempo adquiere la curvatura positiva. Demostró además que esta curvatura está condicionada por la masa de la materia: que, a mayor masa, mayor curvatura y que a menor masa, menor curvatura; que un cuerpo con masa menor se mueve necesariamente en la depresión ocasionada por el cuerpo de masa mayor sin que lleguen a chocar ambos cuerpos.

La generalización matemática realizada por Riemann sobre el concepto del espacio curvo, originado del estudio de la superficie terrestre, sobre la que caminamos diariamente, ha permitido al hombre comprender la estructura del universo. Se comprueba una vez más que las matemáticas basadas en la realidad física describen a ésta con mayor exactitud o puntualidad.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

phili.jpg

Las aves han desempeñado varios papeles fundamentales a lo largo de la historia humana, desde ser fuente crucial en los ecosistemas, hasta servir como objeto de tranquilidad a la cansada y ajetreada alma de los trabajadores.

¿Qué es la matemática filosófica? Parte I

El desarrollo de la investigación matemática ha sido tan espectacular, que abarcar todo el conocimiento actual de la matemática se ha vuelto imposible para cualquier ser humano.

hojas.jpg

¿Realmente son nocivas para el ecosistema? Un ambientalista dirá: “sí, porque desplazan especies nativas”. Sin embargo, ciertas necesidades se satisfacen mejor con especies exóticas que con nativas, por lo que es necesario asumir riesgos.

zoom-lentillas.jpg

La intención es lograr un lente de material blando que logre un acercamiento, en un primer prototipo, de 32 por ciento con respecto a la visualización normal.

El Día Internacional de la Matemática

Cada 14 de marzo se celebra el a la Matemática. Esta fecha fue elegida en virtud de que hace alusión a 3.14, que es el valor aproximado del enigmático número Pi (π).

Breve historia de la clasificación de los seres vivos

El ser humano ha entendido las diferentes formas de vida a través de la observación, distinguiendo las similitudes y diferencias de los organismos.

ASF detecta irregularidades en Conacyt, como pagos a investigadores fallecidos

Como resultado de la fiscalización que hizo la ASF al Sistema Nacional de Investigadores del CONACYT; se detectaron inconsistencias por casi 20 millones de pesos.

Descubren ciudades amazónicas de 2 mil años de antigüedad

El Centro Nacional de Investigaciones Científicas (CNRS) francés sostuvo que en plena selva amazónica descubrió una “extensa red de ciudades de dos mil 500 años de antigüedad”.

ciencia.jpg

Los virus son entidades fascinantes por el alto grado de mutación en sus estrategias evolutivas, de las que quizás en algún futuro podamos aprender más.

Hiparco.jpg

Este gran matemático y astrónomo de la antigüedad fue capaz de medir la distancia de la Tierra a la Luna con una precisión importante.

esp.gif

La gran pasión científica de Pierre Laplace era establecer matemáticamente la estabilidad de nuestro sistema solar; para ello, se propuso aplicar las leyes de la gravitación de Newton y explicar ciertas perturbaciones observadas en Saturno y Júpiter cuand

inter.jpg

Internet Explorer se retiró este 15 de junio de la competencia de navegadores luego de 27 años de haberse creado como parte del paquete Windows 95.

inundaciones.jpg

La situación que enfrentan los tabasqueños es complicada y de alto riesgo. Urge implementar programas de desinfección.

romeo.jpg

El genio soviético fue quien lo hizo, en 1928, y, con éste, nació formalmente la probabilidad como la conocemos en la actualidad.

Covid.jpg

Al igual que todos los virus de ARN, los coronavirus tienden a mutar de manera muy frecuente.