Cargando, por favor espere...

Tlaixaxiliztli
Sobre la intuición en la matemática (II)
La geometría no es una forma de la intuición a priori, como afirmaba Kant, sino una construcción lógica. Estos argumentos fueron la base de la famosa escuela llamada "positivismo lógico".


2. ¿Será posible que una curva (generada por el movimiento de un punto), pueda rellenar todo un cuadrado en un tiempo finito? Nuestra intuición nos diría que en un tiempo finito es imposible; sin embargo, en 1890, el matemático italiano Giuseppe Peano demostró fehacientemente que este hecho sí es posible. Estamos de nuevo en una confusión entre un objeto matemático (curva), que es una ficción que solo existe en la mente humana y se conecta con un objeto material cuya forma es de un cuadrado. Desde el punto de vista del formalismo, no existe ninguna duda; pero desde nuestra intuición entramos en contradicción, dada nuestra costumbre de hacer isovalentes objetos matemáticos con objetos materiales.

3. En un mapa con el área de tres países habrá puntos frontera en los cuales dos de los países se tocan entre sí; pero habrá también puntos en los cuales concurren los tres países. Nuestra intuición nos indica que esto ocurrirá solamente en puntos aislados. Sin embargo, en 1910, el matemático holandés Brower demostró que es posible dividir un mapa de modo que en cada punto fronterizo los tres países se toquen entre sí. Una ingeniosa construcción, en donde se demuestra que no podemos fiarnos de la intuición para establecer verdades matemáticas.

4. En 1922, el vienés K. Menger y el ruso P. Urysohn definieron formalmente el concepto de dimensión, hoy día estudiado en cursos de topología. Para los objetos unidimensionales (se asemejan localmente a un intervalo abierto de la recta), nuestra intuición nos dice que los puntos frontera y de auto intersección son casos excepcionales; es decir, sería imposible construir una curva que conste solo de puntos de auto intercepción. No obstante, en 1915, el matemático W. Sierpinski encontró una curva cuyos puntos son todos puntos de auto intercepción.

Los ejemplos anteriores demuestran que la geometría no es una forma de la intuición a priori, como afirmaba Emmanuel Kant, sino es una construcción lógica. Es importante señalar que estos argumentos fueron la base de la famosa escuela llamada positivismo lógico. Este modelo de pensamiento hizo que Bertrand Russell pensara en iniciar un programa de reducción de la matemática a la lógica; este programa fracasó por lo complicado de sus esquemas y no daba respuesta a algunas invenciones matemáticas.

La necesidad de fundamentar las nacientes geometrías no euclidianas, y otras invenciones que resultaron no constructivas, abren la posibilidad de establecer sistemas axiomáticos con axiomas no necesariamente evidentes (como era la exigencia griega), sino que se establecen simplemente como reglas de juego iniciales para generar un sistema formal que permita obtener conclusiones lógicamente válidas, esto es el fundamento de la escuela formalista de David Hilbert. Por ejemplo: La posibilidad de medir un segmento mediante un número real, fundamentado en el postulado arquimediano, es decir:

Dadas dos longitudes, existe un múltiplo de la primera que es mayor que la segunda. Es posible establecer otro postulado: Existen longitudes que sean mayores que cualquier múltiplo de una longitud dada.

Con este axioma se inventa el espacio no arquimediano, como una forma particular de medir longitudes, establecer sistemas numéricos no arquimedianos, cálculo no arquimediano, análisis funcional no arquimediano, etc. Es decir, bajo este nuevo axioma, se intenta reconstruir resultados relevantes de la matemática en términos no arquimedianos. Este mundo no arquimediano resultó importante para entender algunos hechos de la física teórica.

Los sistemas formales inventados por la mente humana han creado mundos de interpretación conceptual interconectados que han hecho crecer al conocimiento matemático como nunca antes en su historia.

La intuición es una propiedad de la mente humana que nos proyecta hacia el futuro, que nos permite conjeturar afirmaciones, en muchos casos verificables matemáticamente (esto es útil como medio pedagógico), pero no siempre podemos confiar en ella sin antes tener una demostración rigurosa. Lo esencial de la matemática está en sus ideas, pero su fortaleza atemporal está en su rigurosidad lógica para demostrar los hechos que afirma independiente de la intuición.

 El valor de las disciplinas teóricas, como la matemática es intrínseco, está en su estructura interna, coherente y formalmente rigurosa.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

phil.jpg

La imagen viral que vimos en redes sociales captada por el el telescopio espacial “James Webb” nos muestra cómo se veía una porción del universo hace cuatro mil 600 millones de años.

Matematica.jpg

Otras mujeres matemáticas también fueron importantes en la antigua Grecia; por ejemplo Aspacia de Alejandría (470-410 a. C.), pareja de Pericles.

China enviará un explorador robótico al polo sur lunar en 2026

Este explorador, pionero en su tipo, saltará de áreas iluminadas por el sol a cráteres en sombra para realizar análisis detallados.

Estudiantes mexicanas participarán en Rumania en encuentro de ciencia y tecnología

Viajarán a la ciudad de Bucarest, Rumania para participar en el concurso internacional "Infomatrix World Finals".

romeo.jpg

Se sabe que Arquímedes calculó el valor del número irracional π a 11 decimales cuando se aproximó al área de un círculo de radio uno.

Descubren científicos la división de placas tectónicas en el océano Pacífico

Los hallazgos sugieren un movimiento continuo hacia el oeste a lo largo de millones de años, lo que ha llevado a un refinamiento de la teoría de la tectónica de placas.

esp.jpg

En este artículo no hablaré de los libros que son útiles para la enseñanza, ni de divulgación, me centraré en libros estrictos de la disciplina. Aunque la matemática y la filosofía son distintos, tienen elementos en común.

¿Por qué aumentan los resfriados y gripes en temporadas frías?

Congestión nasal, dolor de cabeza, estornudos, fiebre baja, escalofríos… son algunos de los síntomas más comunes del resfriado y la gripe y, aunque todos hemos pasado alguna vez por este malestar, no todo el mundo presenta la misma inmunidad o defensas.

phili.jpg

Aquí te explico por qué es muy importante y necesario proporcionar apoyos económicos y de capacitación a los pequeños productores, ya que los pocos nutrientes afectan la rentabilidad del cultivo y, por ende, al campo mexicano.

tla.jpg

El cero, concebido como ausencia de cantidad, no existía en el mundo griego, puesto que no creían en el no ser; su presencia se vino a establecer muy paulatinamente.

WhatsApp dejará de funcionar en estos dispositivos

A partir de este primero de diciembre, dispositivos como Winko, Iphone, ZTE dejarán de ser compatibles con la aplicación de WhatsApp.

Conagua.jpg

Estos datos se obtienen de las observaciones que realiza la Conagua en las estaciones climatológicas.

hi.jpg

El desarrollo de la matemática en la actualidad es esencialmente influenciado por la escuela formalista, propuesta por uno de los últimos universalistas de la matemática, el alemán David Hilbert.

El fósil viviente que parece una herradura

El mal manejo, la extracción ilegal y la mala información, así como los mitos y el desarrollo turístico, han llevado a pérdidas importantes en el número de poblaciones de la cacerolita de mar.

sol1.jpg

Para muchos es normal que en la época de fin de año las temperaturas sean bajas. Esto se debe, en gran medida, a la inclinación de 23.5 grados del planeta con respecto a su eje, que va del polo norte al sur.