Cargando, por favor espere...

Sobre la intuición en la matemática (II)
La geometría no es una forma de la intuición a priori, como afirmaba Kant, sino una construcción lógica. Estos argumentos fueron la base de la famosa escuela llamada "positivismo lógico".
Cargando...

2. ¿Será posible que una curva (generada por el movimiento de un punto), pueda rellenar todo un cuadrado en un tiempo finito? Nuestra intuición nos diría que en un tiempo finito es imposible; sin embargo, en 1890, el matemático italiano Giuseppe Peano demostró fehacientemente que este hecho sí es posible. Estamos de nuevo en una confusión entre un objeto matemático (curva), que es una ficción que solo existe en la mente humana y se conecta con un objeto material cuya forma es de un cuadrado. Desde el punto de vista del formalismo, no existe ninguna duda; pero desde nuestra intuición entramos en contradicción, dada nuestra costumbre de hacer isovalentes objetos matemáticos con objetos materiales.

3. En un mapa con el área de tres países habrá puntos frontera en los cuales dos de los países se tocan entre sí; pero habrá también puntos en los cuales concurren los tres países. Nuestra intuición nos indica que esto ocurrirá solamente en puntos aislados. Sin embargo, en 1910, el matemático holandés Brower demostró que es posible dividir un mapa de modo que en cada punto fronterizo los tres países se toquen entre sí. Una ingeniosa construcción, en donde se demuestra que no podemos fiarnos de la intuición para establecer verdades matemáticas.

4. En 1922, el vienés K. Menger y el ruso P. Urysohn definieron formalmente el concepto de dimensión, hoy día estudiado en cursos de topología. Para los objetos unidimensionales (se asemejan localmente a un intervalo abierto de la recta), nuestra intuición nos dice que los puntos frontera y de auto intersección son casos excepcionales; es decir, sería imposible construir una curva que conste solo de puntos de auto intercepción. No obstante, en 1915, el matemático W. Sierpinski encontró una curva cuyos puntos son todos puntos de auto intercepción.

Los ejemplos anteriores demuestran que la geometría no es una forma de la intuición a priori, como afirmaba Emmanuel Kant, sino es una construcción lógica. Es importante señalar que estos argumentos fueron la base de la famosa escuela llamada positivismo lógico. Este modelo de pensamiento hizo que Bertrand Russell pensara en iniciar un programa de reducción de la matemática a la lógica; este programa fracasó por lo complicado de sus esquemas y no daba respuesta a algunas invenciones matemáticas.

La necesidad de fundamentar las nacientes geometrías no euclidianas, y otras invenciones que resultaron no constructivas, abren la posibilidad de establecer sistemas axiomáticos con axiomas no necesariamente evidentes (como era la exigencia griega), sino que se establecen simplemente como reglas de juego iniciales para generar un sistema formal que permita obtener conclusiones lógicamente válidas, esto es el fundamento de la escuela formalista de David Hilbert. Por ejemplo: La posibilidad de medir un segmento mediante un número real, fundamentado en el postulado arquimediano, es decir:

Dadas dos longitudes, existe un múltiplo de la primera que es mayor que la segunda. Es posible establecer otro postulado: Existen longitudes que sean mayores que cualquier múltiplo de una longitud dada.

Con este axioma se inventa el espacio no arquimediano, como una forma particular de medir longitudes, establecer sistemas numéricos no arquimedianos, cálculo no arquimediano, análisis funcional no arquimediano, etc. Es decir, bajo este nuevo axioma, se intenta reconstruir resultados relevantes de la matemática en términos no arquimedianos. Este mundo no arquimediano resultó importante para entender algunos hechos de la física teórica.

Los sistemas formales inventados por la mente humana han creado mundos de interpretación conceptual interconectados que han hecho crecer al conocimiento matemático como nunca antes en su historia.

La intuición es una propiedad de la mente humana que nos proyecta hacia el futuro, que nos permite conjeturar afirmaciones, en muchos casos verificables matemáticamente (esto es útil como medio pedagógico), pero no siempre podemos confiar en ella sin antes tener una demostración rigurosa. Lo esencial de la matemática está en sus ideas, pero su fortaleza atemporal está en su rigurosidad lógica para demostrar los hechos que afirma independiente de la intuición.

 El valor de las disciplinas teóricas, como la matemática es intrínseco, está en su estructura interna, coherente y formalmente rigurosa.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

Un estudio identificó a cinco pacientes que desarrollaron la enfermedad de Alzheimer “por contagio”, quienes durante su infancia recibieron un tratamiento hormonal de crecimiento a fin de modificar sus estaturas.

Este extraordinario hombre fue capaz de abordar problemas relevantes de la matemática de su época y hacer aportes trascendentes, abriendo nuevas áreas de investigación que hasta el día de hoy se siguen desarrollando.

Julio Verne nació en Nantes, Francia, en 1828. Fue un brillante escritor y divulgador de la ciencia.

Internet Explorer se retiró este 15 de junio de la competencia de navegadores luego de 27 años de haberse creado como parte del paquete Windows 95.

El aporte matemático de Arthur Cayley es impresionante e innovador, sus ideas visionarias han contribuido a desarrollar la matemática moderna.

El acceso a las vacunas “es uno de los retos definitorios de la pandemia”, afirmó el máximo responsable de la agencia de salud de Naciones Unidas.

Evariste Galois fue uno de los grandes genios de la humanidad y el matemático más joven de la historia matemática.

El caso chileno ilustra los riesgos ecológicos que trae consigo la producción de litio: en el Salar del Carmen se extrae diariamente cantidades gigantescas de agua la empresa SQM, la segunda mayor productora de litio en el mundo.

El medio chino People's Daily dio a conocer al nuevo miembro de su equipo de noticias: Ren Xiaorong, una presentadora digital impulsada por inteligencia artificial (IA).

El desarrollo de la matemática en la actualidad es esencialmente influenciado por la escuela formalista, propuesta por uno de los últimos universalistas de la matemática, el alemán David Hilbert.

Criticó al racionalismo al afirmar que la razón humana debe seguir las razones del corazón por medio de la gracia divina en la fe cristiana, convirtiéndose en un apologista del cristianismo, dando inicio a la corriente filosófica del existencialismo.

Einstein hizo lo mismo con la estructura del universo donde habitamos, al demostrar que es también un espacio curvo.

Una consecuencia sorprendente del resultado BanachTarski, es demostrar que se puede particionar una bola del tamaño de la tierra, reordenar esta partición y obtener una bola del tamaño del sol.

Las plantas no florecen en primavera, después del invierno, por casualidad. En realidad, la producción de flores ocurre como consecuencia de una “planeación”.

Escribir es, en un escenario de rapidez y polarización, un acto revolucionario, además, contribuye "a la memoria, la concentración o la asociación de ideas", sostuvo el profesor de Psicología.

Edición impresa

Editorial

Guerrero, entidad fuera de control


La rabia y la indignación, así como la exigencia de justicia y acción rápida de las autoridades correspondientes son resultado de la actitud omisa del gobierno del estado.

Síguenos en Facebook


Poesía

Sociedad anónima

Sociedad Anónima 1129