Cargando, por favor espere...

UDYAT
David Hilbert: el que estructuró el cerebro de los matemáticos
El desarrollo de la matemática en la actualidad es esencialmente influenciado por la escuela formalista, propuesta por uno de los últimos universalistas de la matemática, el alemán David Hilbert.


La matemática que conocemos hoy día en libros, artículos científicos y en las clases, es producto de una evolución epistemológica de la matemática que ha potenciado su desarrollo como nunca antes en la historia de esta ciencia. El desarrollo de la matemática en la actualidad es esencialmente influenciado por la escuela formalista, que fue propuesta por uno de los últimos universalistas de la matemática, se trata del alemán David Hilbert, que nació en Konigsberg (Prusia Oriental), el 23 de enero de 1862. Por sus obras en álgebra, geometría, análisis, física y fundamentos de la matemática se le reconoce como el matemático del siglo. La matemática contemporánea no puede entenderse sin su influencia y pensamiento, a tal punto que hasta el día de hoy ha estructurado el cerebro de los matemáticos.

David Hilbert pasó su infancia y juventud en Konigsberg hasta su llegada a la Universidad de Gotinga, en donde promovió un Instituto de Matemática que llegaría a ser el mejor de Europa.

Hilbert saltó a la fama en 1888 al resolver el problema de Gordon de la teoría de invariantes, que afirma: cualquier sistema de invariantes está finitamente generado. Su método de demostración no era constructivo, sino que demostró que el problema no podía no tener solución, utilizando un argumento existencial, que no era aceptado en la comunidad matemática. Su escritura era breve y elegante, evitando grandes cálculos, similar a los actuales artículos de investigación.

En 1892, David Hilbert fue nombrado profesor de la Universidad de Konigsberg, en ese año se casó con Kathe Jerosch, con quien tuvo un hijo llamado Frank. En 1895 fue nombrado profesor de la Universidad de Gotinga, en donde empezó a impartir seminarios y cursos dedicados a la física matemática. En 1897 publicó El informe, sintetizando toda la teoría algebraica de números y en 1899 publicó Fundamentos de la geometría, obra que lo llevó a la cumbre de la matemática mundial, proponiendo un sistema axiomático para la geometría, superando a Euclides, intentando dotarlo de: independencia (ningún axioma se deduce de otros), consistencia (no genera contradicciones) y completitud (todas sus proposiciones son demostrables dentro del sistema).

La influencia de David Hilbert en la matemática mundial se hizo patente el ocho de agosto de 1900 durante el II Congreso Internacional de Matemáticos en París, en donde dictó la conferencia inaugural Problemas matemáticos, en la que propuso 23 problemas. Los problemas se clasifican en: fundamentos de la matemática (problemas 1, 2, 3 ,4 y 5), física matemática (problema 6), teoría de números (problemas 7, 8, 9,10 y 11), álgebra (problemas 12, 13, 14, y 17), geometría (problemas 15, 16, y 18) y análisis (problemas 19, 20, 21, 22 y 23).

David Hilbert afirmaba que el rigor no solo es una característica de la matemática sino también de la física, y propuso axiomatizarlo, proponiendo una axiomática de la mecánica. También axiomatizó la teoría de probabilidades y en 1915 formuló sus propias ecuaciones de la teoría de la relatividad general.

Con la idea de axiomatizar y fundamentarlo todo, dedicó sus mayores esfuerzos a demostrar la consistencia de la aritmética; en 1920 publicó (en conjunto con su alumno Ackermann) su Fundamentos de la lógica teórica, sentando las bases de la lógica de primer orden, su objetivo era probar la consistencia de la aritmética a un nivel metamatemático (teoría de la demostración). Sin embargo, esta idea de Hilbert de probar la consistencia de la aritmética fracasó con los resultados de Kurt Godel (que trataremos en otro artículo). Aunque los resultados de Godel dejan un vacío en el proceso de axiomatización, lo esencial del formalismo hilbertiano sigue funcionando hasta el día de hoy gracias al paradigma Bourbaki (que trataremos en otro artículo).

La llegada de los Nazis en 1933 terminó por desmantelar el Instituto de Matemática de Gotinga, causando una gran pena a Hilbert. El advenimiento de la Segunda Guerra Mundial terminó por destruir la matemática alemana; la inmigración de los más talentosos matemáticos fue masiva. David Hilbert murió el 14 de febrero de 1943, en plena Guerra Mundial; en su epitafio se lee: “Debemos saber, sabemosˮ, es decir toda proposición matemática es demostrable dentro de un sistema formal.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

god.jpg

El profesor Godfrey Hardy fue muy famoso, entre otras aportaciones a la matemática, por su concepción ontológicamente neutra en la materia, que lo llevó a escribir uno de los textos más interesantes para entender el trabajo de un matemático.

henry.jpg

Este extraordinario hombre fue capaz de abordar problemas relevantes de la matemática de su época y hacer aportes trascendentes, abriendo nuevas áreas de investigación que hasta el día de hoy se siguen desarrollando.

von.jpg

Von Neumann fue considerado como superdotado, ya que desde los seis años ya sabía dividir, hablar griego antiguo, francés, alemán y latín, y a sus ocho años ya dominaba el cálculo diferencial e integral.

verde.jpg

Saihanba, combinación de chino y mongol, es el nombre del bosque artificial más grande del mundo. Su objetivo, proteger a Beijing, azotada por tormentas de arena debido a la desertificación de sus alrededores.

OMS.jpg

"Sólo siete países africanos (de 54) tienen una posibilitad de conseguir el objetivo", declaró Matshidiso Moeti, directora de la OMS para África, en una rueda de prensa en línea.

philias.jpg

Se ha demostrado que aunque no es un alimento completo por sí solo, los productos comestibles a base de maíz aportan grandes beneficios para la salud humana.

¿Existirán los números reales en la realidad?

Si existen o no está sujeto a lo que concebimos como realidad, misma que es relativa, existe una realidad capturada por nuestros sentidos y una realidad inventada que sólo existe conceptualmente en la mente humana.

ci.jpg

Aunque la predicción del reconocido científico menciona específicamente a los Estados Unidos, los temas que reflexiona tienen alcance global.

Udyat.jpg

Esencialmente el método filosófico propuesto por René Descartes tenía una inspiración matemática, a saber: No admitir nada absolutamente evidente.

Euclides.jpg

Euclides concentró todo el conocimiento matemático creado por los filósofos y matemáticos anteriores a él, entre ellos Eudoxo y Aristóteles.

Covid.jpg

Al igual que todos los virus de ARN, los coronavirus tienden a mutar de manera muy frecuente.

Principios de la genética

¿Cómo es que estos genes pasaban de los padres a los hijos?

Jornaleros agrícolas

El desarrollo de la sociedad ha engendrado diversas clases sociales.

p.jpg

Los conjuntos han estado presentes desde nuestros primeros años, como consecuencia del paradigma formalista de D. Hilbert y la influencia del grupo Bourbaki en la enseñanza de la matemática desde mediados del Siglo XX.

fen.jpg

“Prohibir el fentanilo en la práctica es quitarle a los enfermos el derecho a vivir sin dolor, es retroceder varios años en la historia”, sostuvieron médicos y científicos ante la propuesta de AMLO de prohibir el fentanilo en la medicina.