Cargando, por favor espere...

Origen y desarrollo del cálculo infinitesimal (3/10)
Euclides concentró todo el conocimiento matemático creado por los filósofos y matemáticos anteriores a él, entre ellos Eudoxo y Aristóteles.
Cargando...

Federico Engels, en su obra Anti-Dühring, en el apartado “Dialéctica: negación de la negación”, cuestiona fuertemente a Dühring cuando éste coloca a la lógica formal al mismo nivel de la dialéctica. En algo se parecen, escribe Engels, porque ambas son un “método para el hallazgo de nuevos resultados, para progresar de lo conocido a lo desconocido”, pero la dialéctica “rompe el estrecho horizonte de la lógica formal y contiene el germen de una concepción del mundo más amplia” (pág. 125, párrafo 2). Es en este contexto como el revolucionario alemán proporciona un ejemplo de las magnitudes constantes y variables. De acuerdo con él, la primera se mueve en el marco de la lógica formal, mientras que la segunda, que comprende el cálculo infinitesimal, se mueve en el campo de la dialéctica. Y concluye advirtiéndonos que cuando se trata de resultados en el plano dialéctico, no se puede recurrir simple y llanamente a la lógica formal para su análisis.

En efecto, el cálculo infinitesimal debe analizarse desde la perspectiva de la dialéctica; pues en el mundo de lo infinitamente pequeño, los movimientos y cambios generan contradicciones imposibles de resolver con la ayuda de la lógica formal. Por ejemplo, al diferenciar dos magnitudes x y y, donde la variable y depende de la variable x, se obtienen magnitudes infinitamente pequeñas que tienden a “desaparecer”, quedándonos solamente con la relación matemática dy/dx, “una relación cuantitativa sin cantidad”, diría Engels. Esta razón, que adopta la forma 0/0, dado que las nuevas magnitudes dy y dx son tan pequeñas como se quiera, no puede resolverse con la lógica formal; pero para la dialéctica es perfectamente válida, pues se ha obtenido una negación que puede ser superada con el uso de una función integral.

Desde la perspectiva de la dialéctica, considerada como “el arte de descubrir las contradicciones en el pensamiento y de contraponer las opiniones para alcanzar la verdad” (Dynnik, et. al., 1968, pág. 70), Aristóteles en su obra Sobre las líneas indivisibles y mecánica. (págs. 33-53), cimentó el cálculo infinitesimal sobre tres resultados: el primero, la no existencia de líneas indivisibles; el segundo, que aunque la línea no está compuesta de puntos, ellos sí forman parte de la recta como extremos de la misma, definición que Euclides proporcionó después en su tratado Elementos; y el tercero, que el punto no es lo más pequeño que hay en la recta.

Aristóteles demostró la primera afirmación usando la siguiente explicación trasladada a la matemática de hoy: sea ABCD el cuadrado cuyos lados son indivisibles. Tómese AE igual a 2AB, donde E es la prolongación de la base AB. Constrúyase un rectángulo AEFG, tal que el producto de AE y EF sea (AB)^2, con G punto medio del lado BC y GB paralelo a FE. Por construcción, se deduce que FE es la mitad de AB. Conclusión: el lado AB, que era indivisible, fue dividido en dos partes iguales. Aplicando sucesivamente el resultado obtenido, Aristóteles concluyó que la línea tampoco se puede componer de un conjunto de puntos (indivisibles); pues “el punto quedará necesariamente cortado cuando se corte en partes iguales la recta compuesta de un número impar de partes o en partes desiguales la compuesta de un número par de partes” (pág. 45). Y concluyó probando que “lo que no tiene partes no tiene dimensiones, de manera que no existiría una magnitud continua compuesta de cosas sin partes. Luego tampoco la línea se compone de puntos” (pág. 47). Para el tercer resultado, usó el siguiente razonamiento: “pues si se dice ‘lo más pequeño de lo que hay (en la recta)’, lo más pequeño, en lo que es lo más pequeño, ha de ser también más pequeño que algo, y en la línea no hay ninguna cosa más que puntos (considerados aquí como los extremos de una recta) y líneas, y la línea no es mayor que el punto, de manera que lo más pequeño que hay en la línea no será el punto” (pág. 51).

A partir de estas aportaciones, Euclides concentró todo el conocimiento matemático creado por los filósofos y matemáticos anteriores a él, entre ellos Eudoxo y Aristóteles. De este último, recogió el razonamiento deductivo que formalizó en su obra Elementos.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

El hallazgo sucedió en mayo de 2022 por el paleontólogo Damien Boschetto, quien observó en el borde de un acantilado derrumbado un hueso expuesto.

El equipo de la misión señaló que continúa trabajando para mantener operativa a la nave Voyager 1

Uno de los grandes matemáticos con espíritu de poeta fue el inglés James Joseph Sylvester, quien fue dotado de una extraordinaria intuición matemática y de una gran sensibilidad poética, ya que logró conectar las ideas matemáticas con la poesía.

"Hemos visto con nuestros ojos y sentido bajo nuestros pies cómo muere el Ártico", explicó en declaraciones a la televisión pública ARD el jefe de la expedición, Markus Rex.

Este fenómeno se denomina tormenta geomagnética y sus efectos se manifiestan a manera de interrupciones en las comunicaciones por radio y satélite, además de cortes de energía en los casos más extremos.

A partir de este primero de diciembre, dispositivos como Winko, Iphone, ZTE dejarán de ser compatibles con la aplicación de WhatsApp.

En matemática, los pitagóricos demostraron que: la suma de las medidas de los ángulos interiores de un triángulo es 180°.

Es posible crear una matemática filosófica desde el hacer de un matemático que sea realmente relevante y visionaria. Debe de ser una reflexión humanizante, pero a la vez esclarecedora del mundo de las ideas formales.

Si las personas se pierden el eclipse solar que ocurrirá este 8 de abril, tendrán que esperar por lo menos 30 años para que este fenómeno vuelva a suceder con las mismas características.

Thales de Mileto utilizó el razonamiento para establecer leyes generales; fue el primero en formular teoremas matemáticos como los conocemos hoy.

La luminiscencia se encuentra, entre otro organismos, en estrellas de mar, tiburones y los dinoflagelados que, al emitir luz, hacen que el mar se llene de vida con olas brillantes, proyectando luz a lo largo de las costas.

Así, que el espacio en el que viajamos los humanos y las estrellas es curvo y no plano, como se había considerado en los dos mil años precedentes.

Arquímedes se había adelantado a los matemáticos de mediados y último tercio del Siglo XVII como Cavalieri, Pascal, Newton y Bernoulli.

Marx incluyó en su obra El Capital las características de la agricultura capitalista, la cual extraía más nutrientes del suelo de los que le devolvía, dejando a las tierras infértiles.

Queda claro que AMLO tiene un desconocimiento abismal acerca de la relación entre la ciencia y la política.