Cargando, por favor espere...

Origen y desarrollo del cálculo infinitesimal (3/10)
Euclides concentró todo el conocimiento matemático creado por los filósofos y matemáticos anteriores a él, entre ellos Eudoxo y Aristóteles.
Cargando...

Federico Engels, en su obra Anti-Dühring, en el apartado “Dialéctica: negación de la negación”, cuestiona fuertemente a Dühring cuando éste coloca a la lógica formal al mismo nivel de la dialéctica. En algo se parecen, escribe Engels, porque ambas son un “método para el hallazgo de nuevos resultados, para progresar de lo conocido a lo desconocido”, pero la dialéctica “rompe el estrecho horizonte de la lógica formal y contiene el germen de una concepción del mundo más amplia” (pág. 125, párrafo 2). Es en este contexto como el revolucionario alemán proporciona un ejemplo de las magnitudes constantes y variables. De acuerdo con él, la primera se mueve en el marco de la lógica formal, mientras que la segunda, que comprende el cálculo infinitesimal, se mueve en el campo de la dialéctica. Y concluye advirtiéndonos que cuando se trata de resultados en el plano dialéctico, no se puede recurrir simple y llanamente a la lógica formal para su análisis.

En efecto, el cálculo infinitesimal debe analizarse desde la perspectiva de la dialéctica; pues en el mundo de lo infinitamente pequeño, los movimientos y cambios generan contradicciones imposibles de resolver con la ayuda de la lógica formal. Por ejemplo, al diferenciar dos magnitudes x y y, donde la variable y depende de la variable x, se obtienen magnitudes infinitamente pequeñas que tienden a “desaparecer”, quedándonos solamente con la relación matemática dy/dx, “una relación cuantitativa sin cantidad”, diría Engels. Esta razón, que adopta la forma 0/0, dado que las nuevas magnitudes dy y dx son tan pequeñas como se quiera, no puede resolverse con la lógica formal; pero para la dialéctica es perfectamente válida, pues se ha obtenido una negación que puede ser superada con el uso de una función integral.

Desde la perspectiva de la dialéctica, considerada como “el arte de descubrir las contradicciones en el pensamiento y de contraponer las opiniones para alcanzar la verdad” (Dynnik, et. al., 1968, pág. 70), Aristóteles en su obra Sobre las líneas indivisibles y mecánica. (págs. 33-53), cimentó el cálculo infinitesimal sobre tres resultados: el primero, la no existencia de líneas indivisibles; el segundo, que aunque la línea no está compuesta de puntos, ellos sí forman parte de la recta como extremos de la misma, definición que Euclides proporcionó después en su tratado Elementos; y el tercero, que el punto no es lo más pequeño que hay en la recta.

Aristóteles demostró la primera afirmación usando la siguiente explicación trasladada a la matemática de hoy: sea ABCD el cuadrado cuyos lados son indivisibles. Tómese AE igual a 2AB, donde E es la prolongación de la base AB. Constrúyase un rectángulo AEFG, tal que el producto de AE y EF sea (AB)^2, con G punto medio del lado BC y GB paralelo a FE. Por construcción, se deduce que FE es la mitad de AB. Conclusión: el lado AB, que era indivisible, fue dividido en dos partes iguales. Aplicando sucesivamente el resultado obtenido, Aristóteles concluyó que la línea tampoco se puede componer de un conjunto de puntos (indivisibles); pues “el punto quedará necesariamente cortado cuando se corte en partes iguales la recta compuesta de un número impar de partes o en partes desiguales la compuesta de un número par de partes” (pág. 45). Y concluyó probando que “lo que no tiene partes no tiene dimensiones, de manera que no existiría una magnitud continua compuesta de cosas sin partes. Luego tampoco la línea se compone de puntos” (pág. 47). Para el tercer resultado, usó el siguiente razonamiento: “pues si se dice ‘lo más pequeño de lo que hay (en la recta)’, lo más pequeño, en lo que es lo más pequeño, ha de ser también más pequeño que algo, y en la línea no hay ninguna cosa más que puntos (considerados aquí como los extremos de una recta) y líneas, y la línea no es mayor que el punto, de manera que lo más pequeño que hay en la línea no será el punto” (pág. 51).

A partir de estas aportaciones, Euclides concentró todo el conocimiento matemático creado por los filósofos y matemáticos anteriores a él, entre ellos Eudoxo y Aristóteles. De este último, recogió el razonamiento deductivo que formalizó en su obra Elementos.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

Las consecuencias de la desatención del programa de vacunación infantil ya se están manifestando, pues hay rebrotes de Sarampión y Tuberculosis.

El país carece de una Ley en Ciencia y tecnología, aunque se ha hablado al respecto de realizarla, aun no hay avances en este tema.

La vida de Mendel es un ejemplo clásico de perseverancia. Aunque al principio sus observaciones no tuvieron relevancia para la comunidad científica, biólogos y botánicos llegaron a sus mismas conclusiones décadas después de su muerte.

Arquímedes es considerado el primer investigador en matemática e ingeniero. La obsesión por resolver problemas matemáticos de su época lo conducía a altos grados de concentración que, incluso, se olvidaba de comer, bañarse y de realizar otras tareas cotid

En nuestra época, los alimentos se conservan mejor en refrigeración o en envases.

Los humanos, a diferencia de los animales, son enseñados en familias, escuelas y grupos humanos insertos en sociedades cambiantes en términos estructurales e ideológicos.

Marx no fue un economista cualquiera, fue un verdadero científico dispuesto a sumergirse en los complejos andamiajes de las moléculas, las ecuaciones, el metabolismo de materia y energía para validar o rectificar sus teorías sobre economía.

Este miércoles, la Ciudad de México fue reconocida como la ciudad con más puntos conectados a internet en el mundo, superando incluso a Moscú, Rusia. En contraste, también ostenta el primer lugar en mayor desigualdad.

Descartes, fundamentalmente era un filósofo racionalista, llegó a escribir otras obras importantes, en 1641 escribió Meditaciones de Filosofía.

Los moquitos tienen un sentido del olfato sumamente fino.

La vida de Henrik fue marcada por la pobreza, la fatalidad y la incomprensión; aun así, su mentalidad matemática, lo llevó a mostrar su genialidad, con ideas originales, mostrando caminos nuevos a los matemáticos de su época.

A la naturaleza no le importa si los machos son atraídos hacia los machos o las hembras hacia las hembras. Es mas bien la ideología humana la que castiga estos comportamientos, argumentando que solo prohíbe lo que es “antinatural”.

Sirvan estos dos ejemplos para que los estudiantes mexicanos despierten su interés por el desarrollo histórico de las fórmulas matemáticas.

Los métodos proporcionados por Eudoxo y Arquímedes, hace más de dos mil años, son usados hoy para calcular áreas con cualquier tipo de curvas y volúmenes.

Hace alrededor de 100 mil años se hicieron las primeras modificaciones a algunas herramientas que permitieron la sobrevivencia, y para lograrlo el lenguaje numérico fue fundamental.