Cargando, por favor espere...

Origen y desarrollo del cálculo infinitesimal (3/10)
Euclides concentró todo el conocimiento matemático creado por los filósofos y matemáticos anteriores a él, entre ellos Eudoxo y Aristóteles.
Cargando...

Federico Engels, en su obra Anti-Dühring, en el apartado “Dialéctica: negación de la negación”, cuestiona fuertemente a Dühring cuando éste coloca a la lógica formal al mismo nivel de la dialéctica. En algo se parecen, escribe Engels, porque ambas son un “método para el hallazgo de nuevos resultados, para progresar de lo conocido a lo desconocido”, pero la dialéctica “rompe el estrecho horizonte de la lógica formal y contiene el germen de una concepción del mundo más amplia” (pág. 125, párrafo 2). Es en este contexto como el revolucionario alemán proporciona un ejemplo de las magnitudes constantes y variables. De acuerdo con él, la primera se mueve en el marco de la lógica formal, mientras que la segunda, que comprende el cálculo infinitesimal, se mueve en el campo de la dialéctica. Y concluye advirtiéndonos que cuando se trata de resultados en el plano dialéctico, no se puede recurrir simple y llanamente a la lógica formal para su análisis.

En efecto, el cálculo infinitesimal debe analizarse desde la perspectiva de la dialéctica; pues en el mundo de lo infinitamente pequeño, los movimientos y cambios generan contradicciones imposibles de resolver con la ayuda de la lógica formal. Por ejemplo, al diferenciar dos magnitudes x y y, donde la variable y depende de la variable x, se obtienen magnitudes infinitamente pequeñas que tienden a “desaparecer”, quedándonos solamente con la relación matemática dy/dx, “una relación cuantitativa sin cantidad”, diría Engels. Esta razón, que adopta la forma 0/0, dado que las nuevas magnitudes dy y dx son tan pequeñas como se quiera, no puede resolverse con la lógica formal; pero para la dialéctica es perfectamente válida, pues se ha obtenido una negación que puede ser superada con el uso de una función integral.

Desde la perspectiva de la dialéctica, considerada como “el arte de descubrir las contradicciones en el pensamiento y de contraponer las opiniones para alcanzar la verdad” (Dynnik, et. al., 1968, pág. 70), Aristóteles en su obra Sobre las líneas indivisibles y mecánica. (págs. 33-53), cimentó el cálculo infinitesimal sobre tres resultados: el primero, la no existencia de líneas indivisibles; el segundo, que aunque la línea no está compuesta de puntos, ellos sí forman parte de la recta como extremos de la misma, definición que Euclides proporcionó después en su tratado Elementos; y el tercero, que el punto no es lo más pequeño que hay en la recta.

Aristóteles demostró la primera afirmación usando la siguiente explicación trasladada a la matemática de hoy: sea ABCD el cuadrado cuyos lados son indivisibles. Tómese AE igual a 2AB, donde E es la prolongación de la base AB. Constrúyase un rectángulo AEFG, tal que el producto de AE y EF sea (AB)^2, con G punto medio del lado BC y GB paralelo a FE. Por construcción, se deduce que FE es la mitad de AB. Conclusión: el lado AB, que era indivisible, fue dividido en dos partes iguales. Aplicando sucesivamente el resultado obtenido, Aristóteles concluyó que la línea tampoco se puede componer de un conjunto de puntos (indivisibles); pues “el punto quedará necesariamente cortado cuando se corte en partes iguales la recta compuesta de un número impar de partes o en partes desiguales la compuesta de un número par de partes” (pág. 45). Y concluyó probando que “lo que no tiene partes no tiene dimensiones, de manera que no existiría una magnitud continua compuesta de cosas sin partes. Luego tampoco la línea se compone de puntos” (pág. 47). Para el tercer resultado, usó el siguiente razonamiento: “pues si se dice ‘lo más pequeño de lo que hay (en la recta)’, lo más pequeño, en lo que es lo más pequeño, ha de ser también más pequeño que algo, y en la línea no hay ninguna cosa más que puntos (considerados aquí como los extremos de una recta) y líneas, y la línea no es mayor que el punto, de manera que lo más pequeño que hay en la línea no será el punto” (pág. 51).

A partir de estas aportaciones, Euclides concentró todo el conocimiento matemático creado por los filósofos y matemáticos anteriores a él, entre ellos Eudoxo y Aristóteles. De este último, recogió el razonamiento deductivo que formalizó en su obra Elementos.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

Generaciones nacen inmersas en las redes, mismas que onstituyen la forma predominante de relacionarse con los otros. Algunos factores que propician el ciberacoso son: la viralidad, la rapidez de propagación de las publicaciones y el anonimato del agresor.

En nuestros días, los científicos discuten con gran preocupación el posible aumento, en las futuras generaciones, de enfermedades o males derivados del efecto ambiental catastrófico más grande después de la época de las postguerras.

Las guerras biológicas permiten combatir a los enemigos sin confrontarse físicamente y han sido practicadas a lo largo de la historia. Los primeros usos de agentes biológicos se remontan a tres mil 500 años.

Nuestras características físicas son resultado de la combinación de nuestros genes y entorno. Cada quien es distinto: tiene una combinación única de genes y ha sido moldeada por la realidad en que se desarrolla antes y después de nacer.

Las matemáticas están íntimamente ligadas a la sociedad y a la naturaleza. De hecho, las necesidades prácticas de una sociedad influyen en el desarrollo de la matemática, y entre más desarrollada esté la sociedad, más desarrollada estará esta ciencia.

El inicio de la rigurosidad en el pensamiento matemático es obra del gran maestro Weierstrass, quien, entre otras atribuciones, estableció la existencia de una curva continua sin tangentes, sorprendiendo a los analistas de su época.

La Tierra vivió el día más corto de su historia el pasado 29 de junio, cuando el planeta giró de forma completa en 1.59 milisegundos menos de lo normal.

"Al pueblo de los Emiratos Árabes Unidos, a las naciones árabes y musulmanas, anunciamos la llegada con éxito a la órbita de Marte. Alabado sea Dios".

Pocas son las mujeres que han obtenido frutos tan importantes en las matemáticas a la par de muchos hombres. Es el caso de Ada Lovelace, a ella se reconoce como la pionera de la programación de la máquina analítica.

Tiene como objetivo ampliar la compresión del universo y contará con uno de los espejos más avanzados jamás creados.

El Coahuilasaurus lipani destacó por su hocico corto y profundo.

Arquímedes se había adelantado a los matemáticos de mediados y último tercio del Siglo XVII como Cavalieri, Pascal, Newton y Bernoulli.

El arribo de la mariposa constituye uno de los mayores atractivos turísticos de la entidad, el cual genera empleo y recursos económicos.

La comunicación no es la única ni es exclusiva de los seres humanos. Acá te contamos por qué.

En recientes días hemos escuchado sobre la “nueva amenaza” que acecha las zonas costeras del Golfo de México, la superbacteria “carnívora” Vibro vilmificus; la mayoría de sus víctimas mortales fueron pacientes con problemas hepáticos.