Cargando, por favor espere...
Si nos remontamos a la antigua cultura griega, fue Aristóteles quien diferenció los conceptos de magnitud asociado a la medición geométrica y la de número como un objeto abstracto de pluralidad, al decir: “uno significa medida de cierta multiplicidad y número significa pluralidad de medidas. Por este motivo es sensato que no se identifique al uno como un número, porque la medida no es un conjunto de medidas, sino que la medida y el uno son principios”.
De esta forma, para los griegos los números naturales empezaban desde el dos. Como objeto de medición, el uno era la unidad para medir las cosas. Desde luego, al particionar al uno se convertía en plural y, por lo tanto, las fracciones sí eran consideradas números. El cero, concebido como ausencia de cantidad, no existía en el mundo griego, puesto que no creían en el no ser; su presencia se vino a establecer muy paulatinamente, al principio como una notación que represente ausencia de cantidad en la numeración indoarábica.
En la actualidad, los números naturales tienen una conceptualización dualista; por un lado, la necesidad de contar (cardinal) y por otro lado la necesidad de ordenar (ordinales), es por ello que para muchos matemáticos (no especialistas en los fundamentos de la matemática), el conjunto de los números naturales empieza desde el uno, en donde es consistente con su aspecto dual. Sin embargo, si le preguntamos a un matemático con entrenamiento en fundamentos de la matemática, nos diría que el conjunto de los números naturales empieza por el cero, que intentaremos explicar a continuación:
Un matemático especialista en fundamentos de la matemática es esencialmente un formalista que intenta, a partir de axiomas y principios muy elementales, dar sustento sólido a la matemática, usa como noción básica los conceptos de conjunto y pertenencia (aunque no los define). En ese sentido, la construcción de los números naturales lo hace mediante el Axioma de conjunto inductivo (xЄSx+=xU{x}ЄS) en donde garantiza siempre la existencia de un determinado conjunto infinito. Con este Axioma debe establecer una cierta ordenación compatible con la relación de pertenencia. Como formalista acepta al conjunto vacío; y usando el Axioma del conjunto inductivo va creando un primer conjunto infinito, sin embargo, se puede hacer lo mismo si se toma cualquier otro conjunto diferente del vacío, luego se procede a demostrar que existe el más pequeño de todos los conjuntos inductivos (intersección de todos ellos) a éste lo llama el conjunto de los números naturales, denotado por ω={0,1,2,3,…}. Es importante mencionar que esta construcción respeta la ordenación del conjunto por inclusión, mientras que la característica de conteo no es relevante empezar por el cero el uno, al fin de cuentas es solo un tema de notación, aunque la ausencia de cantidad que representa el cero no sea muy intuitivo para contar, esto no le preocupa al formalista.
No siempre lo que se enseña mediante el discurso matemático escolar es exactamente lo mismo que se establece en la propia matemática. Esta controversia en torno a si el cero o el uno son números naturales o no, comenzó durante la década de los 60 con la introducción de la llamada Matemática Moderna, bajo la influencia formalista, causando algunas rupturas cognitivas que hasta hoy observamos en la educación.
Como transposición didáctica, empezar a contar y ordenar desde el uno sería lo más sensato como número natural. Sin embargo, desde el formalismo matemático, los números naturales deben considerar al cero como primer elemento si queremos cuantificar al conjunto vacío.
El problema filosófico si el vacío es o no un conjunto es la esencia del ser o no ser, de Anaximandro, Parménides, Paul Sartre y de tantos filósofos. Desde el formalismo, como paradigma actual de la matemática, se decreta mediante un axioma o se demuestra su existencia, pero aceptando otro axioma, es decir, cuando los matemáticos no comprendemos, simplemente axiomatizamos, aunque desde el punto de vista filosófico sea insuficiente, no responde a la conjetura.
Las plantas no florecen en primavera, después del invierno, por casualidad. En realidad, la producción de flores ocurre como consecuencia de una “planeación”.
Científicos explican que el debilitamiento del campo magnético afecta principalmente la zona espacial sobre Brasil.
Así como un deportista ama su actividad, lo encuentra entretenido, le gusta y goza, de igual manera un matemático, con sus objetos de estudio, ama intrínsecamente la disciplina, muchas veces sin esperar utilidad.
Para alcanzar independencia política se requiere independencia económica, y esto exige soberanía científica y tecnológica; pero a los países ricos conviene que los pobres no lo consigan.
En febrero de 2001 se publicaron los resultados de casi una década de trabajo del prometedor programa de investigación genética: Proyecto Genoma Humano, el cual logró descifrar el 90 por ciento del genoma humano.
La sonda Chang'e 5 alunizó poco después de las 23:00 horas del martes tras descender de una nave orbital, según la Administración Nacional China del Espacio.
Los resultados matemáticos de Gödel han causado una grieta en el conocimiento matemático, misma que hoy tiene consecuencias filosóficas profundas.
Las buenas noticias disparadas desde Palacio Nacional, que pintan a un México próspero y “feliz”, parecen no corresponderse con las estadísticas del INEGI.
China espera convertirse en la tercera nación en lograr esta hazaña, que requiere un operativo extremadamente complejo.
Los modos del pensamiento matemático influyen en su hacer, el Siglo XX ha sido testigo de al menos dos formas de este hacer, con marcada influencia ideológica.
Esta red impulsará la creación de ciudades inteligentes y permitirá realizar cirugías a distancia
El método obtenido por el discípulo de Platón dio nacimiento formal al cálculo infinitesimal e influyó significativamente en los matemáticos posteriores a Eudoxo.
La Secretaría de Salud ya “estudia a los contactos del caso y se atiende al paciente. El diagnóstico aún no es definitivo".
Así se titula el curso que impartiré del 22 de marzo al ocho de abril de 2022 en las instalaciones del Instituto Tecnológico de Tecomatlán de manera presencial y virtual.
En 2019, las berries fueron el tercer producto agroalimentario más exportado por nuestro país después de la cerveza y el aguacate.
La 4T asfixia a bibliotecas de México
Remesas digitales: América Latina mira hacia las criptomonedas
Aumenta desempleo en México, informa INEGI
Mueren militares por explosión de artefacto en Jalisco
INE investiga presunta injerencia de Morena y MC en elección judicial
Concluyen campañas del Poder Judicial en medio de irregularidades
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador