Cargando, por favor espere...
Si nos remontamos a la antigua cultura griega, fue Aristóteles quien diferenció los conceptos de magnitud asociado a la medición geométrica y la de número como un objeto abstracto de pluralidad, al decir: “uno significa medida de cierta multiplicidad y número significa pluralidad de medidas. Por este motivo es sensato que no se identifique al uno como un número, porque la medida no es un conjunto de medidas, sino que la medida y el uno son principios”.
De esta forma, para los griegos los números naturales empezaban desde el dos. Como objeto de medición, el uno era la unidad para medir las cosas. Desde luego, al particionar al uno se convertía en plural y, por lo tanto, las fracciones sí eran consideradas números. El cero, concebido como ausencia de cantidad, no existía en el mundo griego, puesto que no creían en el no ser; su presencia se vino a establecer muy paulatinamente, al principio como una notación que represente ausencia de cantidad en la numeración indoarábica.
En la actualidad, los números naturales tienen una conceptualización dualista; por un lado, la necesidad de contar (cardinal) y por otro lado la necesidad de ordenar (ordinales), es por ello que para muchos matemáticos (no especialistas en los fundamentos de la matemática), el conjunto de los números naturales empieza desde el uno, en donde es consistente con su aspecto dual. Sin embargo, si le preguntamos a un matemático con entrenamiento en fundamentos de la matemática, nos diría que el conjunto de los números naturales empieza por el cero, que intentaremos explicar a continuación:
Un matemático especialista en fundamentos de la matemática es esencialmente un formalista que intenta, a partir de axiomas y principios muy elementales, dar sustento sólido a la matemática, usa como noción básica los conceptos de conjunto y pertenencia (aunque no los define). En ese sentido, la construcción de los números naturales lo hace mediante el Axioma de conjunto inductivo (xЄSx+=xU{x}ЄS) en donde garantiza siempre la existencia de un determinado conjunto infinito. Con este Axioma debe establecer una cierta ordenación compatible con la relación de pertenencia. Como formalista acepta al conjunto vacío; y usando el Axioma del conjunto inductivo va creando un primer conjunto infinito, sin embargo, se puede hacer lo mismo si se toma cualquier otro conjunto diferente del vacío, luego se procede a demostrar que existe el más pequeño de todos los conjuntos inductivos (intersección de todos ellos) a éste lo llama el conjunto de los números naturales, denotado por ω={0,1,2,3,…}. Es importante mencionar que esta construcción respeta la ordenación del conjunto por inclusión, mientras que la característica de conteo no es relevante empezar por el cero el uno, al fin de cuentas es solo un tema de notación, aunque la ausencia de cantidad que representa el cero no sea muy intuitivo para contar, esto no le preocupa al formalista.
No siempre lo que se enseña mediante el discurso matemático escolar es exactamente lo mismo que se establece en la propia matemática. Esta controversia en torno a si el cero o el uno son números naturales o no, comenzó durante la década de los 60 con la introducción de la llamada Matemática Moderna, bajo la influencia formalista, causando algunas rupturas cognitivas que hasta hoy observamos en la educación.
Como transposición didáctica, empezar a contar y ordenar desde el uno sería lo más sensato como número natural. Sin embargo, desde el formalismo matemático, los números naturales deben considerar al cero como primer elemento si queremos cuantificar al conjunto vacío.
El problema filosófico si el vacío es o no un conjunto es la esencia del ser o no ser, de Anaximandro, Parménides, Paul Sartre y de tantos filósofos. Desde el formalismo, como paradigma actual de la matemática, se decreta mediante un axioma o se demuestra su existencia, pero aceptando otro axioma, es decir, cuando los matemáticos no comprendemos, simplemente axiomatizamos, aunque desde el punto de vista filosófico sea insuficiente, no responde a la conjetura.
El Centro Nacional de Investigaciones Científicas (CNRS) francés sostuvo que en plena selva amazónica descubrió una “extensa red de ciudades de dos mil 500 años de antigüedad”.
Para que el deportista cumpla sus objetivos físicos debe considerar varias variables. Aquí explicamos la hipertrofia muscular, puesto que la población que realiza deporte casi siempre busca una buena imagen física.
“Aproximadamente el 70 por ciento de los cinco mil 200 millones de hectáreas de tierras secas que se utilizan en agricultura o ganadería está degradada y amenazada por la desertificación”.
En nuestra época, los alimentos se conservan mejor en refrigeración o en envases.
¿Por qué algunas personas pueden comprender más fácil el formalismo matemático? ¿Por qué les fluyen ideas matemáticas con mayor facilidad que a otras? Esta increíble mente perteneció a uno de los más enigmáticos en la Historia de la Matemática.
Antes se creía que el parecido entre los fósiles y los seres vivos era gracias a un espíritu animador o vegetativo. Fue gracias al médico Niels Steensen que se reconoció la pertenencia de fósiles a seres vivos.
“Caffarelli tiene una intuición fantástica, es sencillamente notable… me costó mucho seguirle el ritmo. De algún modo, ve inmediatamente cosas que los otros no ven”, afirmó el afamado matemático Louis Nirenberg.
Para mejorar el rendimiento de los atletas, debemos contemplar en nuestro trabajo deportivo el desarrollo de los conceptos y habilidades que explico en este artículo.
Cuando se habla de entrenamiento deportivo y su dosificación en los atletas, entran en juego diversas variantes que influirán en resultados ya sea positivos o negativos.
Hoy sabemos que forma parte de los números irracionales y que es un número algebraico, al ser solución de una ecuación algebraica.
La influencia que han ejercido las ideas de Platón (Atenas, 429-347 a. C.) en la mente de los matemáticos perdura hasta nuestros días. Matemáticos contemporáneos como G. H. Hardy y Kurt Gödel son declarados platonistas.
Fue uno de los matemáticos políticos que apoyó decididamente la Revolución Francesa. En 1794 formó parte del comité de organización de la Ecole Centrale oles Travaux Rublics (Escuela Politécnica de París) donde escribió una de sus obras más famosas: Aplic
El alunizaje ocurrió en la cara noroeste a las 3:34 horas de la costa este de Estados Unidos, cerca de Mons Latreille, en el Mare Crisium.
Así como un deportista ama su actividad, lo encuentra entretenido, le gusta y goza, de igual manera un matemático, con sus objetos de estudio, ama intrínsecamente la disciplina, muchas veces sin esperar utilidad.
Toda la matemática clásica, desde la época de los griegos, se construyó evitando considerar un infinito actual, aunque de manera subliminal siempre se ha usado. Aquí te explico.
Cultura narco: reflejo estructural de un fenómeno sistémico
Fallece Teresa González Murillo, integrante del Colectivo Luz de Esperanza Jalisco
Llevará a México hasta 30 años atender rezago en infraestructura escolar
Cambia el rumbo de la educación en México
Llama SAT a cumplir con la declaración anual
Generación de imágenes por medio de IA gastó más de 216 millones litros de agua
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador