Cargando, por favor espere...

¿Es el cero o el uno el primer número natural?
El cero, concebido como ausencia de cantidad, no existía en el mundo griego, puesto que no creían en el no ser; su presencia se vino a establecer muy paulatinamente.
Cargando...

Si nos remontamos a la antigua cultura griega, fue Aristóteles quien diferenció los conceptos de magnitud asociado a la medición geométrica y la de número como un objeto abstracto de pluralidad, al decir: “uno significa medida de cierta multiplicidad y número significa pluralidad de medidas. Por este motivo es sensato que no se identifique al uno como un número, porque la medida no es un conjunto de medidas, sino que la medida y el uno son principios”.

De esta forma, para los griegos los números naturales empezaban desde el dos. Como objeto de medición, el uno era la unidad para medir las cosas. Desde luego, al particionar al uno se convertía en plural y, por lo tanto, las fracciones sí eran consideradas números. El cero, concebido como ausencia de cantidad, no existía en el mundo griego, puesto que no creían en el no ser; su presencia se vino a establecer muy paulatinamente, al principio como una notación que represente ausencia de cantidad en la numeración indoarábica.

En la actualidad, los números naturales tienen una conceptualización dualista; por un lado, la necesidad de contar (cardinal) y por otro lado la necesidad de ordenar (ordinales), es por ello que para muchos matemáticos (no especialistas en los fundamentos de la matemática), el conjunto de los números naturales empieza desde el uno, en donde es consistente con su aspecto dual. Sin embargo, si le preguntamos a un matemático con entrenamiento en fundamentos de la matemática, nos diría que el conjunto de los números naturales empieza por el cero, que intentaremos explicar a continuación:

Un matemático especialista en fundamentos de la matemática es esencialmente un formalista que intenta, a partir de axiomas y principios muy elementales, dar sustento sólido a la matemática, usa como noción básica los conceptos de conjunto y pertenencia (aunque no los define). En ese sentido, la construcción de los números naturales lo hace mediante el Axioma de conjunto inductivo (xЄSŽx+=xU{xS) en donde garantiza siempre la existencia de un determinado conjunto infinito. Con este Axioma debe establecer una cierta ordenación compatible con la relación de pertenencia. Como formalista acepta al conjunto vacío; y usando el Axioma del conjunto inductivo va creando un primer conjunto infinito, sin embargo, se puede hacer lo mismo si se toma cualquier otro conjunto diferente del vacío, luego se procede a demostrar que existe el más pequeño de todos los conjuntos inductivos (intersección de todos ellos) a éste lo llama el conjunto de los números naturales, denotado por ω={0,1,2,3,…}. Es importante mencionar que esta construcción respeta la ordenación del conjunto por inclusión, mientras que la característica de conteo no es relevante empezar por el cero el uno, al fin de cuentas es solo un tema de notación, aunque la ausencia de cantidad que representa el cero no sea muy intuitivo para contar, esto no le preocupa al formalista.

No siempre lo que se enseña mediante el discurso matemático escolar es exactamente lo mismo que se establece en la propia matemática. Esta controversia en torno a si el cero o el uno son números naturales o no, comenzó durante la década de los 60 con la introducción de la llamada Matemática Moderna, bajo la influencia formalista, causando algunas rupturas cognitivas que hasta hoy observamos en la educación.

Como transposición didáctica, empezar a contar y ordenar desde el uno sería lo más sensato como número natural. Sin embargo, desde el formalismo matemático, los números naturales deben considerar al cero como primer elemento si queremos cuantificar al conjunto vacío.

El problema filosófico si el vacío es o no un conjunto es la esencia del ser o no ser, de Anaximandro, Parménides, Paul Sartre y de tantos filósofos. Desde el formalismo, como paradigma actual de la matemática, se decreta mediante un axioma o se demuestra su existencia, pero aceptando otro axioma, es decir, cuando los matemáticos no comprendemos, simplemente axiomatizamos, aunque desde el punto de vista filosófico sea insuficiente, no responde a la conjetura.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

Científicos descubrieron en estos días un exoplaneta en órbita a una de las dos estrellas pequeñas de un sistema binario ubicado a unos 100 años luz de la Tierra.

Este explorador, pionero en su tipo, saltará de áreas iluminadas por el sol a cráteres en sombra para realizar análisis detallados.

El dispositivo promete transformar la vida de personas con capacidades diferentes.

A pesar de todas las riquezas que posee África (y que aquí menciono), la gran mayoría de la población vive una situación muy deplorable, lo que representa una gran contradicción.

“El financiamiento es la columna vertebral de un sistema nacional de ciencia, tecnología e innovación. Desde aquí se aplican las políticas públicas, se incentiva o se corrige".

Las matemáticas, por muy abstractas que sean, tienen una base real.

Entre marxistas es frecuente afirmar que lo más importante de Marx no fue lo que dijo, sino su método de conocimiento. Esto es así porque, así como el universo es infinito, también lo es su conocimiento.

El inicio de la rigurosidad en el pensamiento matemático es obra del gran maestro Weierstrass, quien, entre otras atribuciones, estableció la existencia de una curva continua sin tangentes, sorprendiendo a los analistas de su época.

La secuenciación del genoma del cacao ha abierto nuevas fronteras en la mejora de la calidad y sostenibilidad del cultivo de cacao.

A bordo del cohete Centaur, de la empresa United Launch Alliance (ULA), viajan cinco robots diseñados por la UNAM, mismos que podrán desplazarse de manera autónoma por el suelo de la luna.

Y es al mismo tiempo un retrato fiel de las sociedades en las que rige el neoliberalismo.

Escribir es, en un escenario de rapidez y polarización, un acto revolucionario, además, contribuye "a la memoria, la concentración o la asociación de ideas", sostuvo el profesor de Psicología.

Pero los métodos subjetivos de conocimiento de la historia como el de comprender (o “verstehen”) no resuelven el problema de la objetividad.

El empresario advirtió la existencia de un gran peligro de que las redes sociales se dividan entre extrema derecha y extrema izquierda, lo que generaría "más odio y división en nuestra sociedad".

Los problemas de la humanidad se agudizarán; en primer lugar, por la falta de alimentos ya que, con suelos destruidos o empobrecidos.