Cargando, por favor espere...
Para dar solución a sus necesidades prácticas, el hombre tuvo que perfeccionar los medios de trabajo, sus métodos de investigación y profundizar en los conocimientos sobre fenómenos concretos. Fue así como al calcular áreas de terrenos accidentados, volúmenes de objetos irregulares y organizar su tiempo durante el día para optimizar su quehacer diario, el hombre desarrolló una forma precisa de cálculo y medición conocido hoy como cálculo de infinitésimos o cantidades infinitamente pequeñas.
Los infinitésimos surgieron con la teoría atomista de Leucipo de Mileto (siglo V a. C.) y Demócrito de Abdera (460–370 a. C.) para dar respuesta al problema de las magnitudes continuas, consideradas en la antigüedad como conjunto de partículas infinitamente pequeñas denominadas átomos. Apoyándose en estas consideraciones atomistas, Zenón de Elea (490–430 a. C.), con sus más de 40 aporías, entre las que destacan La dicotomía de Aquiles y la tortuga, El corredor en el estadio y La flecha voladora, hizo ver a sus contemporáneos que era imposible caracterizar una magnitud continua como un conjunto de partículas infinitamente pequeñas.
Pero llegó Eudoxo de Cnido (390–337 a. C.), uno de los matemáticos más sobresalientes de la Academia de Platón, quien demostró que Zenón estaba en un error: que siempre es posible caracterizar una magnitud continua haciendo que algo sea tan pequeño como se quiera. Con este planteamiento, Eudoxo resolvió las aporías de Zenón, que habían surgido en el tratamiento de los procesos infinitos, y desarrolló un método geométrico de aproximación conocido como método por agotamiento, usado para hallar áreas de figuras curvilíneas, entre ellas el círculo. Para encontrar el área aproximada del círculo, Eudoxo calculó primero el área del polígono inscrito. Al agregarle más lados, se dio cuenta que el polígono se asemejaba más al círculo; con eso concluyó que si observaba el área del polígono, encontraría también el área del círculo.
La tarea, sin embargo, se abandonó durante un largo periodo y fue con Arquímedes de Siracusa (287–212 a. C.) cuando se retomó. Este genio, para calcular áreas de superficies curvas y volúmenes de sólidos, combinó el método por agotamiento con el de reducción al absurdo, el cual consiste en construir una contradicción usando la negación de lo que se quiere demostrar. El trabajo de Arquímedes consistió en calcular, mediante el método por agotamiento, el área de un polígono regular de 96 lados, en un círculo de radio uno, primero, y circunscrito después. Luego comparó las áreas de esos polígonos y observó que la diferencia entre ellas era muy pequeña, a tal grado que las áreas de cada uno podrían considerarse equivalentes. Arquímedes construyó una contradicción mediante la negación de dicha equivalencia y demostró efectivamente que el área del polígono inscrito era equivalente al área del polígono circunscrito, y que cada una de las áreas se aproximaba a la del círculo considerado. Se sabe que Arquímedes calculó el valor del número irracional π a 11 decimales cuando se aproximó al área de un círculo de radio uno.
Con todo y su genialidad, el más notable de los científicos de Siracusa no resolvió el problema en su totalidad. El área de los dos polígonos usados por él para encontrar el área del círculo radio uno, no cubría el área total de éste, pues quedaban espacios infinitamente pequeños que él no pudo cubrir.
No fue sino hasta 1635 cuando el matemático italiano Bonaventura Francesco Cavalieri (1598–1647), en su obra traducida y titulada Una nueva forma de desarrollar la geometría usando el indivisible continuo, retomó el método por agotamiento de Eudoxo y el de reducción al absurdo de Arquímedes, e incorporó a su obra la teoría infinitesimal como actualmente se estudia en las matemáticas superiores, incluyendo con ello el concepto formal del infinito y pequeñas cantidades geométricas de Kepler. Con la introducción del infinito en las matemáticas, Cavalieri logró con éxito encontrar el área del círculo. A partir de entonces, la medida de las longitudes y el cálculo de áreas y volúmenes comenzaron a calcularse mediante la suma de una infinidad de indivisibles, permitiendo al inglés Isaac Newton (1643–1727) y al alemán Gottfried Wilhelm Leibniz (164–1716), unificar y complementar el cálculo diferencial con el cálculo integral.
¿Por qué algunas personas pueden comprender más fácil el formalismo matemático? ¿Por qué les fluyen ideas matemáticas con mayor facilidad que a otras? Esta increíble mente perteneció a uno de los más enigmáticos en la Historia de la Matemática.
A pesar del indiscutible rol que juegan los bosques, cada año disminuye su superficie debido al cambio de uso de suelo, tala clandestina e incendios forestales. De 2000 a 2018 se perdieron 13 mil 777 hectáreas.
¿Alguna vez te has preguntado cómo es que podemos caminar, correr, pensar, sentir o platicar con otros? De todo eso se encargan las neuronas, su función es importantísima, aquí te cuento porqué y cómo funcionan.
El pan y la sal comparten una historia íntimamente relacionada desde su descubrimiento y uso en la alimentación; la cultura los tiene como emblemas relevantes en la vida cotidiana de los pueblos más antiguos.
El chatbot DeepSeek apuesta por el “código abierto”, lo que implica bajos costos y alta eficiencia.
La luminiscencia se encuentra, entre otro organismos, en estrellas de mar, tiburones y los dinoflagelados que, al emitir luz, hacen que el mar se llene de vida con olas brillantes, proyectando luz a lo largo de las costas.
Las matemáticas están íntimamente ligadas a la sociedad y a la naturaleza. De hecho, las necesidades prácticas de una sociedad influyen en el desarrollo de la matemática, y entre más desarrollada esté la sociedad, más desarrollada estará esta ciencia.
Las consecuencias del calentamiento global antropogénico están ocurriendo con una rapidez mayor a la pronosticada por la comunidad científica.
La empresa Tesla, del multimillonario Elon Musk, pretende fabricar nuevas instalaciones en tres estados de la República Mexicana.
El 8 de abril será la fecha clave y también será la primera vez que se intente volar un dispositivo en otro planeta.
La ciencia no es buena ni mala en sí misma, es una herramienta que puede utilizarse de distintas maneras y con distintos propósitos; puede resolver problemas, pero también puede crearlos.
El eclipse solar total será el próximo 8 de abril.
Científicos identificaron la existencia de campos magnéticos poderosos y ordenados que se despliegan en espiral desde el borde del agujero negro supermasivo conocido como Sagitario A* (Sgr A*).
Heine logró demostrar que si una serie trigonométrica converge a una función continua en un intervalo dado, entonces la serie es única.
El fenómeno astronómico tendrá lugar la noche del día de hoy jueves 13 de marzo alrededor de las 23:00 horas, alcanzando su máximo a las 00:26 horas del viernes 14.
Tempra, jarabe contaminado activa alerta de Cofepris
Invex y Actinver sustituyen a CIBanco tras acusaciones de lavado de dinero
El PACIC, otro fracaso que la 4T no admite
En bancarrota otra vez: Cinemex no resiste la nueva era del entretenimiento
Crisis en la Universidad Veracruzana afecta a estudiantes
OPS lanza alerta sanitaria por sarampión, México confirma más de tres mil casos
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.