Cargando, por favor espere...

Tlaixaxiliztli
Sobre la intuición en la matemática (II)
La geometría no es una forma de la intuición a priori, como afirmaba Kant, sino una construcción lógica. Estos argumentos fueron la base de la famosa escuela llamada "positivismo lógico".


2. ¿Será posible que una curva (generada por el movimiento de un punto), pueda rellenar todo un cuadrado en un tiempo finito? Nuestra intuición nos diría que en un tiempo finito es imposible; sin embargo, en 1890, el matemático italiano Giuseppe Peano demostró fehacientemente que este hecho sí es posible. Estamos de nuevo en una confusión entre un objeto matemático (curva), que es una ficción que solo existe en la mente humana y se conecta con un objeto material cuya forma es de un cuadrado. Desde el punto de vista del formalismo, no existe ninguna duda; pero desde nuestra intuición entramos en contradicción, dada nuestra costumbre de hacer isovalentes objetos matemáticos con objetos materiales.

3. En un mapa con el área de tres países habrá puntos frontera en los cuales dos de los países se tocan entre sí; pero habrá también puntos en los cuales concurren los tres países. Nuestra intuición nos indica que esto ocurrirá solamente en puntos aislados. Sin embargo, en 1910, el matemático holandés Brower demostró que es posible dividir un mapa de modo que en cada punto fronterizo los tres países se toquen entre sí. Una ingeniosa construcción, en donde se demuestra que no podemos fiarnos de la intuición para establecer verdades matemáticas.

4. En 1922, el vienés K. Menger y el ruso P. Urysohn definieron formalmente el concepto de dimensión, hoy día estudiado en cursos de topología. Para los objetos unidimensionales (se asemejan localmente a un intervalo abierto de la recta), nuestra intuición nos dice que los puntos frontera y de auto intersección son casos excepcionales; es decir, sería imposible construir una curva que conste solo de puntos de auto intercepción. No obstante, en 1915, el matemático W. Sierpinski encontró una curva cuyos puntos son todos puntos de auto intercepción.

Los ejemplos anteriores demuestran que la geometría no es una forma de la intuición a priori, como afirmaba Emmanuel Kant, sino es una construcción lógica. Es importante señalar que estos argumentos fueron la base de la famosa escuela llamada positivismo lógico. Este modelo de pensamiento hizo que Bertrand Russell pensara en iniciar un programa de reducción de la matemática a la lógica; este programa fracasó por lo complicado de sus esquemas y no daba respuesta a algunas invenciones matemáticas.

La necesidad de fundamentar las nacientes geometrías no euclidianas, y otras invenciones que resultaron no constructivas, abren la posibilidad de establecer sistemas axiomáticos con axiomas no necesariamente evidentes (como era la exigencia griega), sino que se establecen simplemente como reglas de juego iniciales para generar un sistema formal que permita obtener conclusiones lógicamente válidas, esto es el fundamento de la escuela formalista de David Hilbert. Por ejemplo: La posibilidad de medir un segmento mediante un número real, fundamentado en el postulado arquimediano, es decir:

Dadas dos longitudes, existe un múltiplo de la primera que es mayor que la segunda. Es posible establecer otro postulado: Existen longitudes que sean mayores que cualquier múltiplo de una longitud dada.

Con este axioma se inventa el espacio no arquimediano, como una forma particular de medir longitudes, establecer sistemas numéricos no arquimedianos, cálculo no arquimediano, análisis funcional no arquimediano, etc. Es decir, bajo este nuevo axioma, se intenta reconstruir resultados relevantes de la matemática en términos no arquimedianos. Este mundo no arquimediano resultó importante para entender algunos hechos de la física teórica.

Los sistemas formales inventados por la mente humana han creado mundos de interpretación conceptual interconectados que han hecho crecer al conocimiento matemático como nunca antes en su historia.

La intuición es una propiedad de la mente humana que nos proyecta hacia el futuro, que nos permite conjeturar afirmaciones, en muchos casos verificables matemáticamente (esto es útil como medio pedagógico), pero no siempre podemos confiar en ella sin antes tener una demostración rigurosa. Lo esencial de la matemática está en sus ideas, pero su fortaleza atemporal está en su rigurosidad lógica para demostrar los hechos que afirma independiente de la intuición.

 El valor de las disciplinas teóricas, como la matemática es intrínseco, está en su estructura interna, coherente y formalmente rigurosa.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

Ciencia.jpg

“El financiamiento es la columna vertebral de un sistema nacional de ciencia, tecnología e innovación. Desde aquí se aplican las políticas públicas, se incentiva o se corrige".

romeo.jpg

Las matemáticas están íntimamente ligadas a la sociedad y a la naturaleza. De hecho, las necesidades prácticas de una sociedad influyen en el desarrollo de la matemática, y entre más desarrollada esté la sociedad, más desarrollada estará esta ciencia.

Volcan.jpg

Se trata de "una zona que está cubierta con nieve 10 meses al año, de difícil acceso por la altura y geografía que ostenta una tupida vegetación y bosque valdiviano".

Un país que no vive

Como los animales de carga, nuestra rutina diaria se limita a dormir, alimentarnos y trabajar.

Centro de la Tierra podría estar conformada por agua: científicos

La revista National Geographic refiere que sí existe la posibilidad de que haya agua en el núcleo de la Tierra y presume que dicho líquido podría ser "la causa de la misteriosa capa cristalina" que lo rodea.

"El cavallino rampante": Ferrari y la ciencia de los autos

¡La carrera comienza! La marca cuyos autos alcanzan los 340 kilómetros por hora está en riesgo. Esto en el reciente estreno de la película Ferrari, de Michael Mann.

ojo.jpg

En esta era digital somos aparentemente libres de hacer público lo que pensamos y sentimos; de compartir a dónde viajamos y de comprar una infinidad de mercancías. Pero esta “libertad” choca con el obstáculo económico.

planeta.jpg

El mundo cambia, la gran honda cósmica se mueve con base en leyes, no en plegarias.

more.jpg

El oportunista luce como un “matasanos”, un doctor de ocasión que, viendo al paciente lamentarse por el dolor que le aqueja en una pierna, decide cortársela. Solo tenía un golpe, pero nadie podrá decirle al doctor que no logró curar el dolor.

cide11.jpg

Luego de haber agotado todas las vías para exigir legalidad, la comunidad del CIDE dio a conocer por medio de una publicación que cerrarán la carretera México Toluca en defensa de la institución.

fourier.jpg

Hijo de un sastre, huérfano a los ocho años. En 1812 escribió la obra cumbre de su carrera científica, la Teoría Analítica del Calor, por la que ganó un premio de la Academia de Ciencias de París.

abs.jpg

¿Cuál es el carácter distintivo de la dialéctica? Pongamos el caso de la guerra, ¿es nociva o es perjudicial? Desde el punto de vista de la dialéctica, es indispensable saber qué guerra se está planteando. Aquí la verdad siempre es concreta.

phili.jpg

Aquí te explico por qué es muy importante y necesario proporcionar apoyos económicos y de capacitación a los pequeños productores, ya que los pocos nutrientes afectan la rentabilidad del cultivo y, por ende, al campo mexicano.

elon.jpg

El empresario advirtió la existencia de un gran peligro de que las redes sociales se dividan entre extrema derecha y extrema izquierda, lo que generaría "más odio y división en nuestra sociedad".

marx.jpg

Entre marxistas es frecuente afirmar que lo más importante de Marx no fue lo que dijo, sino su método de conocimiento. Esto es así porque, así como el universo es infinito, también lo es su conocimiento.