Cargando, por favor espere...
Cuando las limitaciones cognitivas y temporales propias de la especie humana no nos permiten verificar ciertas afirmaciones matemáticas, habitualmente recurrimos a nuestra intuición como una especie de proyección para llegar a lo inalcanzable, por lo tanto, recurrimos a la axiomatización. Cuando no entienden o no pueden cerciorarse bien, los matemáticos axiomatizan, con ello le dan una validez formal a sus afirmaciones, aunque éstas conlleven consecuencias a veces contraintuitivas, como el caso del llamado Axioma de elección, que habitualmente se usa en el trabajo matemático.
Ernst Zermelo (1871-1953) plantea, en 1904, el famoso Axioma de elección, en donde establece la existencia de un conjunto cuyos elementos son extraídos de un conjunto infinito, jugando un poco con la intuición humana. Esta idea ya se había utilizado por otros matemáticos, pero no se encontraba debidamente fundamentada. Ernst Zermelo fue criticado muy duramente por matemáticos de renombre como Lebesgue, Borel, Baire, Hadamad, quienes consideraban que tal función de elección debería ser construida o especificada. Con este Axioma, Ernst Zermelo demuestra que todo conjunto puede ser bien ordenado (entre ellos el conjunto de los números reales) aunque no se muestra cuál es ese orden. Los teoremas de existencia empezaron a ser cuestionados por la comunidad matemática.
Plantearemos la idea de este Axioma:
1.- Evidentemente, si tenemos un número finito de conjuntos diferentes del vacío, en cada conjunto es posible elegir un elemento; esta idea de elegir en cada conjunto diferente del vacío, técnicamente es llamada función de elección. Esta función permite construir un conjunto con los elementos elegidos que es llamado conjunto de elección.
2.- Lo que no es tan evidente es que podamos hacer lo descrito anteriormente si el número de conjuntos diferentes del vacío es infinito. Nuestra temporalidad humana no nos permite verificar que es posible elegir. Sin embargo, apelando a nuestra intuición humana, es plausible afirmar que sí es posible realizarlo y, por lo tanto, generar un conjunto de elección.
El paradigma del formalismo en donde estamos inmersos los matemáticos nos permite decretarlo a través de un axioma, denominado Axioma de elección.
En la práctica matemática, cuando escogemos un representante de una clase de equivalencia, lo hacemos con fundamento en el Axioma de elección. Con este axioma se prueban resultados importantes en la matemática, por ejemplo, que todo espacio vectorial tiene una base, todo conjunto es bien ordenado, los famosos teoremas de Hann – Banach, etc.
Si bien es cierto que la gran mayoría de matemáticos acepta este axioma, existe otro grupo de matemáticos que lo cuestiona, sobre todo los matemáticos de la escuela intuicionista, para quienes no basta decretar la existencia de un objeto matemático, sino que es indispensable construirlo, si no hay construcción, no hay existencia. El matemático formalista acepta este axioma sin mayor objeción, puesto que se permite inventar algún axioma, como regla de juego inicial, lo importante para el formalista es que no entre en contradicción con otros axiomas. En este sentido, la axiomática de Zermelo-Fraenkel es la más difundida para fundamentar casi toda la matemática (con base en la teoría de conjuntos); no entra en contradicción con el Axioma de elección. Este resultado fue probado con los trabajos de Kurt Gödel y Paul Cohen que demuestran que el Axioma de Elección es lógicamente independiente de los otros axiomas de la teoría axiomática de conjuntos.
La aceptación del Axioma de elección implica algunos resultados sorprendentes, como la existencia de conjuntos no medibles dentro de la recta o del plano; que trae como consecuencia paradojas tan extrañas como la paradoja de Tarski-Banach, según la cual podemos descomponer una esfera maciza en una serie de ocho piezas de modo que al reconstruirla tengamos una esfera de tamaño doble de la anterior. De otro lado, la independencia de este axioma con otros axiomas de la teoría trae como consecuencia que, aunque tengamos un axioma que entre en contradicción con el Axioma de
elección, no conlleve una contracción posterior; por lo tanto, la demostración por el absurdo no es operatizable en este contexto.
Para describir el comportamiento de los fenómenos físicos, biológicos, químicos, sociales o económicos, el hombre recurre, en la mayoría de los casos, a modelos matemáticos para ayudarse a resolver dos tipos de problemas.
Los métodos proporcionados por Eudoxo y Arquímedes, hace más de dos mil años, son usados hoy para calcular áreas con cualquier tipo de curvas y volúmenes.
El tránsito hacia una matemática filosófica exige iniciar una quinta revolución matemática; para ello, el estudio de la historia desde el hacer de un matemático es fundamental.
El término “transgénico” significa la inserción de un gen extraño en un organismo, acción propia de la tecnología biológica que consiste en transferir un fragmento del ADN de una célula a otra.
El aporte matemático de Arthur Cayley es impresionante e innovador, sus ideas visionarias han contribuido a desarrollar la matemática moderna.
Mientras el trabajo matemático tiene reglas, axiomas, y su libertad está en función de estar gobernado por sistemas formales; en el trabajo filosófico...
Otras mujeres matemáticas también fueron importantes en la antigua Grecia; por ejemplo Aspacia de Alejandría (470-410 a. C.), pareja de Pericles.
La historia de esa constante comenzó desde que el hombre tuvo necesidad de construir pirámides con bases circulares y cilíndricas, como lo demuestran los papiros de Ahmes y Moscú.
Las matemáticas dieron orden al caos. Dan certeza en el momento que se vive y ayudan a comprender y medir los fenómenos que rodean a las personas.
Hace un par de años tuve dolor muscular, cansancio, fiebre y malestar general; por los síntomas, pensé que era Covid-19; pero tras varias pruebas, el diagnóstico final fue dengue.
La luminiscencia se encuentra, entre otro organismos, en estrellas de mar, tiburones y los dinoflagelados que, al emitir luz, hacen que el mar se llene de vida con olas brillantes, proyectando luz a lo largo de las costas.
Los artrópodos fueron el grupo más abundante desde que la vida animal apareció en la Tierra
La variante ómicron del coronavirus ya se ha detectado en más de 40 países desde que fuera identificada por primera vez en Sudáfrica a finales de noviembre pasado.
La sonda Mars Express halló “inmensos” depósitos de 3.7 kilómetros de espesor, ubicados bajo el suelo del ecuador de Marte, estructuras que sugieren la presencia de hielo.
Este gran matemático e inventor, dedicó sus últimos años a la docencia en la Biblioteca de Alejandría, sus obras están escritas al estilo de notas de clase de distintos temas: mecánica, geometría, óptica.
Mexicanos debemos estar alerta ante intentos imperialistas de Trump: Antorcha
Hermana de Martí Batres y Morena buscan legalizar despojos en CDMX
Buró de Crédito cambia de dueño: bancos venden participación a Trans Union
Fortalecen lazos México-China en el marco del Año Nuevo de la Serpiente
Sonora concentra el 20 % de las armas decomisadas en México
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador