Cargando, por favor espere...

Karl Weierstrass: el padre del análisis moderno
El inicio de la rigurosidad en el pensamiento matemático es obra del gran maestro Weierstrass, quien, entre otras atribuciones, estableció la existencia de una curva continua sin tangentes, sorprendiendo a los analistas de su época.
Cargando...

Hasta inicios del Siglo XIX, la matemática no tenía la rigurosidad que hoy ostenta, en particular el cálculo matemático se desarrollaba intuitivamente, algunas de sus técnicas eran poco rigurosas, fundamentalmente porque el concepto central de función no estaba del todo esclarecido y la concepción de los números reales era muy débil, razones históricas y filosóficas contribuyeron para que esta oscuridad se develara recién a principios del Siglo XX. El inicio de la rigurosidad en el pensamiento matemático es obra de un gran maestro llamado Karl Weierstrass, quien nació el 31 de octubre de 1815 en Munster, Alemania, en el seno de una familia católica liberal; su padre visualizaba a su hijo dedicado a las leyes y los negocios, actividad en la que Karl no tenía el mínimo interés. Sin embargo, bajo la presión del padre, entró a estudiar leyes en la Universidad de Bonn, en donde se sabe que estudió poco, regresando a los cuatro años sin obtener un título.

Ante esta situación decidió postular a la Academia de maestros en Munster, en donde conoció al profesor de matemática, Christof Gudermann (1798-1852), quien se convirtió en su mentor y Karl siempre le estuvo agradecido. El trabajo matemático del profesor Gudermann, se centraba en el desarrollo de series de potencias de las funciones elípticas; en ese tiempo, conceptos cómo la convergencia de funciones, eran intuitivos. Siguiendo estas ideas, Karl se tropezó con algunos vacíos y trabajó duro para superarlos. Se graduó como maestro en 1841, a los 23 años, presentando como memoria de habilitación los avances que había obtenido en el tema de series de potencia y causando la admiración de su maestro Gudermann; sin embargo, esto no fue suficiente para que la comunidad académica le diera un puesto universitario. Así que Karl pasó 15 años de su vida como profesor de escuela, en donde enseñaba alemán, geografía y escritura para niños; por las noches, después de un arduo trabajo en la escuela, seguía con sus investigaciones.

De ser un modesto profesor de escuela, Karl Weierstrass sorprendió a la comunidad matemática europea al publicar su trabajo: Sobre funciones abelianas, en el Journal de Crelle (Vol. 47–1854). Por este trabajo recibió el doctorado Honoris Causa por la Universidad de Konigsberg. Sus grandes contribuciones le permitieron recibir ofertas de trabajo de varias universidades europeas; sin embargo, Karl deseaba trabajar en la Universidad de Berlín, en donde fue nombrado profesor en 1856; también fue electo miembro de la Academia de Berlín. Ese mismo año publicó su Teoría de funciones abelianas, en el Journal de Crelle, en donde establece la inversión de las integrales hiperelípticas.

Con el trabajo matemático de Karl Weierstrass se inicia lo que se denomina la Aritmetización del análisis, que busca fundamentar el análisis en última instancia en los números enteros, para ello establece rigurosamente conceptos como límites y convergencia de series, definiendo a los números irracionales como límite de una sucesión de números racionales, contribuyendo a brindar una base sólida al análisis. En 1861, esta mente analítica estableció la existencia de una curva continua que no tiene tangentes en ningún punto, sorprendiendo a los analistas de su época, acostumbrados al trabajo intuitivo. Otra de sus contribuciones relevantes fue establecer por primera vez, y de manera rigurosa, los conceptos de convergencia uniforme y no uniforme y su famoso teorema de aproximación, en donde demuestra que toda curva continua es aproximable por polinomios.

Karl Weierstrass no solo fue un gran analista, sino también un gran maestro; muchos de sus discípulos recordarían sus clases con gran admiración por la claridad didáctica al presentar sus temas de investigación, que era su característica, además de socializar con colegas y discípulos.

Como los grandes maestros, Karl Weierstrass publicó poco, pero cada contribución sentaba firmes bases para el análisis matemático. Siempre tuvo un espíritu crítico y continuamente revisaba y ampliaba sus trabajos. Su estado de salud empezó a decaer desde 1850 sin que lograra recuperarse; en sus últimas clases, un alumno le escribía en la pizarra mientras él permanecía en una silla de ruedas, prácticamente paralizado. Murió de neumonía, a los 82 años, el 19 de febrero de 1897, en Berlín.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

Dos especies vegetales que no corren con la misma suerte cuando llegan las festividades navideñas.

Los especialistas indican que en todo el país se detectan alrededor de 195 mil casos de cáncer al año, los cuales tienen una tasa de mortalidad del 46%.

No dormir provoca que el cerebro elimine una cantidad significativa de neuronas, así como una perdida significativa de conexiones sinápticas; lo peor, la recuperación del sueño sería incapaz de revertir el daño.

¿Cómo es que estos genes pasaban de los padres a los hijos?

Debido a la decisión del gobierno de la “Cuarta Transformación” (4T), de recortar presupuesto al sector de la ciencia, el Gran Telescopio Milimétrico (GTM) corre peligro de dejar de funcionar a partir del primero de septiembre.

Los problemas de la humanidad se agudizarán; en primer lugar, por la falta de alimentos ya que, con suelos destruidos o empobrecidos.

Toda la matemática clásica, desde la época de los griegos, se construyó evitando considerar un infinito actual, aunque de manera subliminal siempre se ha usado. Aquí te explico.

El profesor Sullivan “es de los pocos matemáticos que, dentro de su mente, es capaz de ver mundos que son solo series de símbolos. Tiene una imagen mental de objetos mucho más abstractos que los objetos geométricos más cotidianos”.

Por muy abstracto que se vuelva el razonamiento matemático procede de la realidad material y tarde o temprano vuelve a ella.

Un estudio reveló que “quejarse” es uno de los hábitos que más puede generar daños en el cerebro, tanto para la resolución de problemas como para la memoria.salu

Las plantas no florecen en primavera, después del invierno, por casualidad. En realidad, la producción de flores ocurre como consecuencia de una “planeación”.

La intención es lograr un lente de material blando que logre un acercamiento, en un primer prototipo, de 32 por ciento con respecto a la visualización normal.

Este año, China auspiciará el Tercer Foro de la Franja y la Ruta para la Cooperación Internacional. De cara al futuro, China seguirá promoviendo la cooperación en innovación en el marco de la construcción conjunta de la Franja y la Ruta.

La situación que enfrentan los tabasqueños es complicada y de alto riesgo. Urge implementar programas de desinfección.

Es considerado el más prolífico de los matemáticos; su nombre figura en fórmulas, teoremas, números, integrales y constantes en distintas ramas de la matemática.