Cargando, por favor espere...

La génesis de la teoría de conjuntos (primera parte)
Toda la matemática clásica, desde la época de los griegos, se construyó evitando considerar un infinito actual, aunque de manera subliminal siempre se ha usado. Aquí te explico.
Cargando...

La idea de conjunto siempre ha estado presente en el trabajo matemático, Euclides (III a.C.) decía: “para toda cantidad de números primos existe uno mayor”; para evitar referirse a que el conjunto de números primos es infinito y poder concebirlo como un todo. Para los griegos, era paradójico concebir que un segmento de recta de longitud finita, que contiene una infinidad de puntos (cada uno de medida cero) y que finalmente sumando todas las longitudes de los puntos del segmento dé como resultado cero. Es por ello que los antiguos griegos solo aceptaban el infinito potencial, como aquel infinito que se construía a través de sucesivas operaciones, y no concebían el infinito actual, que es considerar al infinito como un todo.

Toda la matemática clásica, desde la época de los griegos, se construyó evitando considerar un infinito actual, aunque de manera subliminal siempre se ha usado, por ejemplo, decir que un punto pertenece a una recta, cuando sabemos que el objeto recta es un infinito actual. El infinito potencial, era lo único aceptado hasta el Siglo XIX, en donde el estudio del naciente Análisis Real, fue el iniciador de la llamada Teoría de Conjuntos.

Cronológicamente, la primera idea casi formal de conjunto fue planteada por el matemático alemán Bernhard Riemann (1826-1866), dotado de una extra-ordinaria capacidad intuitiva, entendió la matemática desde el punto de vista más conceptual, que es el de cálculos constructivos, como era la característica de la época. Bernard Riemann en su tesis Doctoral defendida en 1852, basado en el principio de comprensión (a toda propiedad le corresponde una clase o conjunto de objetos que cumplen dicha propiedad) estudia las funciones multivaluadas en el plano complejo, dispositivo que hoy conocemos como Superficie de Riemann, de muestra que tienen dimensión mayor a tres, además de ser una variedad, este último concepto, no muy técnico como lo conocemos ahora, pero que se refiere a la existencia de un objeto abstracto (clase o conjunto) que contienen objetos matemáticos con ciertas propiedades.

Para Bernhard Riemann, las variedades podrían ser continuas o discretas. Esta idea de variedad es el germen de lo que llamamos variedad topológica o diferenciable, dando la posibilidad de introducir distintas distancias en las variedades, que finalmente constituyó lo que hoy día llamamos Variedad Riemanniana.

Esta generalidad de Bernhard Riemann potenció la idea de trabajar conceptualmente la noción básica de conjunto y crea una nueva metodología de trabajo matemático, que ha permitido un desarrollo potente de la Matemática.

Uno de los primeros resultados dentro de esta nueva metodología lo debemos al teólogo alemán Bernard Bolzano (1781-1848) quien, en 1817, demostró la existencia de extremos inferiores de un conjunto acotado inferiormente.

En 1847, el mismo Bolzano, admitió la existencia del infinito actual, y demostró que dos intervalos compactos (cerrado y acotado) cualquiera, son equipotentes (tienen la misma cantidad de puntos). Además, estableció –sin demostración– que un conjunto infinito contiene un subconjunto equipotente, idea que resultó fundamental para superar los prejuicios que existían alrededor de los conjuntos infinitos.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

La deficiencia o error no está en el modelo matemático que se está usando, sino en la metodología implementada, en la recopilación de información y en los cálculos aritméticos.

El uso de semillas mejoradas es una alternativa que garantiza la rentabilidad de las cosechas y la seguridad alimentaria, pero esa tecnología no es accesible para los 6.8 millones de personas que se dedican al sector agrícola.

Los métodos proporcionados por Eudoxo y Arquímedes, hace más de dos mil años, son usados hoy para calcular áreas con cualquier tipo de curvas y volúmenes.

En la Edad Media se sospechaba que la peste negra era originada por algún agente que entraba en un cuerpo y se trasmitía a otras personas.

Invadiendo el mundo, es una cinta que exhibe con nitidez escenas racistas sobresalientes como la que provocó la muerte del afroamericano George Floyd en Minneapolis.

Las matemáticas están íntimamente ligadas a la sociedad y a la naturaleza. De hecho, las necesidades prácticas de una sociedad influyen en el desarrollo de la matemática, y entre más desarrollada esté la sociedad, más desarrollada estará esta ciencia.

La sonda Chang'e 5 alunizó poco después de las 23:00 horas del martes tras descender de una nave orbital, según la Administración Nacional China del Espacio.

El papel de la ciencia en el desarrollo social se piensa en sus aportaciones a la tecnología para elevar la productividad, generar riqueza, crecimiento económico y progreso.

Si te has identificado con las personas que aman el terror, te contaré una historia de hechos reales que te pondrá los pelos de punta. Ésta es una historia sobre seres vivos que vuelven zombis a sus víctimas.

El matemático fue el primero en usar las funciones de variable compleja en la solución de problemas aritméticos, iniciando una fructífera área de investigación llamada: Teoría Analítica de Números.

La tecnología hace posible que las ventas en línea lleguen a más personas, sin importar donde se encuentren; por lo que cada vez más usuarios de la red realizan compras a través de internet.

Sus ideas científicas fueron muy revolucionarias para su tiempo y no fueron comprendidas por sus contemporáneos

Se trata de "una zona que está cubierta con nieve 10 meses al año, de difícil acceso por la altura y geografía que ostenta una tupida vegetación y bosque valdiviano".

Es el corazón del marxismo hay una forma de concebir la política revolucionaria que, a mi juicio, es necesario comprender, asimilar y recordar siempre.

La revista National Geographic refiere que sí existe la posibilidad de que haya agua en el núcleo de la Tierra y presume que dicho líquido podría ser "la causa de la misteriosa capa cristalina" que lo rodea.