Cargando, por favor espere...
La idea de conjunto siempre ha estado presente en el trabajo matemático, Euclides (III a.C.) decía: “para toda cantidad de números primos existe uno mayor”; para evitar referirse a que el conjunto de números primos es infinito y poder concebirlo como un todo. Para los griegos, era paradójico concebir que un segmento de recta de longitud finita, que contiene una infinidad de puntos (cada uno de medida cero) y que finalmente sumando todas las longitudes de los puntos del segmento dé como resultado cero. Es por ello que los antiguos griegos solo aceptaban el infinito potencial, como aquel infinito que se construía a través de sucesivas operaciones, y no concebían el infinito actual, que es considerar al infinito como un todo.
Toda la matemática clásica, desde la época de los griegos, se construyó evitando considerar un infinito actual, aunque de manera subliminal siempre se ha usado, por ejemplo, decir que un punto pertenece a una recta, cuando sabemos que el objeto recta es un infinito actual. El infinito potencial, era lo único aceptado hasta el Siglo XIX, en donde el estudio del naciente Análisis Real, fue el iniciador de la llamada Teoría de Conjuntos.
Cronológicamente, la primera idea casi formal de conjunto fue planteada por el matemático alemán Bernhard Riemann (1826-1866), dotado de una extra-ordinaria capacidad intuitiva, entendió la matemática desde el punto de vista más conceptual, que es el de cálculos constructivos, como era la característica de la época. Bernard Riemann en su tesis Doctoral defendida en 1852, basado en el principio de comprensión (a toda propiedad le corresponde una clase o conjunto de objetos que cumplen dicha propiedad) estudia las funciones multivaluadas en el plano complejo, dispositivo que hoy conocemos como Superficie de Riemann, de muestra que tienen dimensión mayor a tres, además de ser una variedad, este último concepto, no muy técnico como lo conocemos ahora, pero que se refiere a la existencia de un objeto abstracto (clase o conjunto) que contienen objetos matemáticos con ciertas propiedades.
Para Bernhard Riemann, las variedades podrían ser continuas o discretas. Esta idea de variedad es el germen de lo que llamamos variedad topológica o diferenciable, dando la posibilidad de introducir distintas distancias en las variedades, que finalmente constituyó lo que hoy día llamamos Variedad Riemanniana.
Esta generalidad de Bernhard Riemann potenció la idea de trabajar conceptualmente la noción básica de conjunto y crea una nueva metodología de trabajo matemático, que ha permitido un desarrollo potente de la Matemática.
Uno de los primeros resultados dentro de esta nueva metodología lo debemos al teólogo alemán Bernard Bolzano (1781-1848) quien, en 1817, demostró la existencia de extremos inferiores de un conjunto acotado inferiormente.
En 1847, el mismo Bolzano, admitió la existencia del infinito actual, y demostró que dos intervalos compactos (cerrado y acotado) cualquiera, son equipotentes (tienen la misma cantidad de puntos). Además, estableció –sin demostración– que un conjunto infinito contiene un subconjunto equipotente, idea que resultó fundamental para superar los prejuicios que existían alrededor de los conjuntos infinitos.
Las distopías, en esencia, orientan a los espectadores en ese mismo sentido, es decir, al conformismo.
Hasta el último centavo del dinero destinado a fomentar el trabajo científico es arrancado para satisfacer los intereses más oscuros de la “Cuarta Transformación” (4T).
Un molar de al menos 130 mil años de antigüedad encontrado en una cueva de Laos, en el sureste asiático, podría ser clave para arrojar nueva luz sobre los denisovanos, especie poco conocida descubierta en 2010.
¿Alguna vez te has preguntado por qué el cempasúchil tiene ese aroma tan característico? Detrás de su belleza se esconde una historia que explora los compuestos responsables de la “experiencia multisensorial” que ofrece esta flor.
El cuerpo humano en la edad adulta tiene aproximadamente 50 trillones de células vivas que cumplen funciones específicas dentro del organismo.
Esencialmente el método filosófico propuesto por René Descartes tenía una inspiración matemática, a saber: No admitir nada absolutamente evidente.
El país no conseguirá la salud ecológica y humana con las buenas intenciones de la Semarnat, porque se necesita voluntad política, mayor presupuesto.
Alan Turing no fue un estudiante brillante, pero si talentoso, perseverante en los problemas que quería resolver. Se hizo famoso cuando inventó una máquina capaz de descifrar los códigos secretos de comunicación usados en la SGM.
Pero los métodos subjetivos de conocimiento de la historia como el de comprender (o “verstehen”) no resuelven el problema de la objetividad.
Los modos del pensamiento matemático influyen en su hacer, el Siglo XX ha sido testigo de al menos dos formas de este hacer, con marcada influencia ideológica.
Ante el descenso de temperaturas, los seres humanos se las han ingeniado para no pasar frío y continuar con sus actividades normales, pero qué pasa con los animales, ¿cómo sobreviven a las temperaturas bajas extremas? Te cuento.
En el ámbito de la astronomía, Galileo no solo confirmó que la Tierra se movía en torno al Sol y se burló de los inquisidores del Santo Oficio.
Se trata de una fábrica de generación de datos, cuyo propósito es ofrecer estos datos a las empresas que desarrollan modelos de Inteligencia Artificial .
Científicos identificaron la existencia de campos magnéticos poderosos y ordenados que se despliegan en espiral desde el borde del agujero negro supermasivo conocido como Sagitario A* (Sgr A*).
Esta red impulsará la creación de ciudades inteligentes y permitirá realizar cirugías a distancia
Lluvias causan inundaciones en Ciudad de México
La 4T asfixia a bibliotecas de México
Doble golpe para el sector energético: Pemex no despega y Shell se retira
Nueva Ley para eliminar burocracia podría comprometer la transparencia
Temen despidos trabajadores del Poder Judicial
Jueces frenan aranceles de Trump
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador