Cargando, por favor espere...
Dos herramientas matemáticas de demostración fueron constantes en las obras de Arquímedes: el método exhaustivo, establecido por Eudoxo de Cnido, y el método por reducción al absurdo, formalizado por él mismo. Ambos métodos fueron usados por él; en primer lugar, para calcular áreas del círculo de radio uno, del segmento parabólico y de la espiral que lleva su nombre y, en segundo lugar, para encontrar volúmenes de segmentos de “conoide rectángulo” (paraboloide de revolución), de “conoide obtusángulo” (hiperboloide de revolución) y de esferoide (elipsoide de revolución).
Thomas Little Heath, en su libro The works of Archimedes (págs. 99-188), recoge los trabajos Sobre los conoides y esferoides y Sobre las espirales del sabio de Siracusa. De estas dos obras, me interesa particularmente destacar el trabajo Sobre las espirales, porque, en esta aportación matemática, se vislumbra ya la síntesis del cálculo integral y diferencial. Arquímedes comienza construyendo su espiral partiendo de un punto que se mueve sobre una recta a una velocidad uniforme, recta que gira sobre un punto fijo (origen) con una velocidad angular uniforme.
Para continuar con su investigación, el genio de Siracusa demuestra que el área de dicha espiral, en su primera vuelta, cubre la tercera parte del círculo que la envuelve. La solución a esta afirmación trajo consigo la respuesta a uno de los tres problemas clásicos de la Grecia antigua, el problema de la trisección del ángulo que, con la cuadratura del círculo y la duplicación del cubo, habían resistido los embates de los más eminentes matemáticos griegos.
La espiral de Arquímedes, que “evoca el infinito” y “triseca” ángulos, concentra el cálculo infinitesimal muy desarrollado para su tiempo. Un ejemplo de esta concentración se encuentra en la siguiente proposición: “el área acotada por la primera vuelta de la espiral y la línea inicial es igual a la tercera parte del primer círculo (que la envuelve)” (Proposición 24, pág. 178).
Hoy la ecuación de dicha espiral se puede expresar en coordenadas polares de la forma r (θ)=aθ, donde r es la distancia al origen, a es una constante y θ es el ángulo girado. Se requiere encontrar el área de la espiral cuando el ángulo polar varía de 0 a 2π en relación con el área del círculo circunscrito de radio 2πa. Es inmediato calcular el área de este círculo por medio de la fórmula πr2 = π (2π a)2 y de la espiral, por medio de la integral en coordenadas polares, tomando como integrando la función polar r2/2 en el intervalo [0, 2π]. Usando algunas operaciones básicas de la integral, obtenemos en seguida que π (2π a)2/3, corresponde al área de la espiral, la cual es la tercera parte del primer círculo que la circunscribe. Esta maquinaria matemática, sin embargo, no existía en aquellos tiempos, por eso Arquímedes procede de la siguiente manera: divide el círculo de radio 2π a en sectores de amplitud θ=2π /n; con n en los números naturales. Luego, en cada sector circular, examina el arco de la espiral que queda dentro del mismo sector y acota el área correspondiente a dicho arco de la espiral entre las áreas de dos sectores circulares. Posteriormente calcula el área del sector circular más grande inscrito en cada arco de la espiral y el área del sector circular más pequeño circunscrito a cada arco de la espiral, y por medio del método exhaustivo va cubriendo progresivamente la espiral con cada sector circular inscrito y circunscrito tantas veces como se quiera. Después, suma el área de todos lo sectores circulares más grandes inscritos en cada arco de la espiral y el área de todos los sectores circulares más pequeños circunscritos a cada arco. Finalmente, Arquímedes aplica dos veces el método por reducción al absurdo para comprobar la veracidad de la Proposición 24 de su libro Sobre las espirales.
Con esta aportación, Arquímedes se había adelantado a los matemáticos de mediados y último tercio del Siglo XVII como Cavalieri, Pascal, Newton y Bernoulli, quienes usaron formalmente las coordenadas polares para resolver problemas relativos a áreas, longitud de arcos parabólicos y tangentes respectivamente.
El Meteorito de Allende abrió “una ventana para entender el origen del Sistema Solar” y junto a otro célebre meteorito “mexicano” de hace 66 millones de años en el área submarina de Chicxulub, ha aportado importantes conocimientos científicos sobre la historia de la Tierra.
La ciencia, para mejores resultados, requiere constancia, equipamiento, infraestructura y recursos suficientes para realizar investigación de calidad.
Mirar directamente al Sol durante un eclipse puede causar daños irreversibles en la retina, incluso sin sentir dolor; como sucedió en 1991.
Si existen o no está sujeto a lo que concebimos como realidad, misma que es relativa, existe una realidad capturada por nuestros sentidos y una realidad inventada que sólo existe conceptualmente en la mente humana.
La investigación de Legendre se caracterizó por materializarse en la publicación de libros importantes para la enseñanza, entre las que destacan Elementos de geometría (1794) y Ensayos sobre la teoría de números (1798).
Invadiendo el mundo, es una cinta que exhibe con nitidez escenas racistas sobresalientes como la que provocó la muerte del afroamericano George Floyd en Minneapolis.
“Un lugar como nosotros depende totalmente del ingreso de los visitantes, dependemos de que los visitantes hagan el pago de su boleto para vivir la experiencia", dijo el director general.
Los daños causados al planeta comienzan a pasarnos factura. Las tasas de deforestación han afectado gravemente las distintas funciones de los bosques, además, su papel como regulador del clima está siendo severamente afectado.
"Sólo siete países africanos (de 54) tienen una posibilitad de conseguir el objetivo", declaró Matshidiso Moeti, directora de la OMS para África, en una rueda de prensa en línea.
En la ruleta los resultados son equiprobables, no hay predilección por ningún número o color.
Con la muerte de Arquímedes se inicia el ocaso de los griegos, en el año 146 a.C. los romanos invadieron Cartago y el Mediterráneo, menos Egipto.
El impacto social de los Beatles ha sido sumamente importante; en materia musical y de producción de sonido desataron una auténtica revolución, y ahora la inteligencia artificial nos acerca a lo que pudo haber sido.
Si el país tuviera los medios para aprovechar sustentablemente su vegetación, podría cosechar el equivalente a 56 mil 126 millones de pesos.
Toda investigación no es necesariamente científica, a veces se confunde con investigación tecnológica, o peor, con informes técnicos. Aclararemos estas confusiones en este artículo.
Pareciera contraintuitivo que alguien haga su vida al lado de grandes montañas que sacan humo y fuego, sin embargo, ese material que sacan por sus chimeneas hace que los suelos que los rodean sean fértiles...
Irán e Israel acuerdan un alto el fuego total, anuncia Trump
Irán desmiente a Trump: “No hay acuerdo de alto el fuego”
Artistas internacionales participarán en festival cultural en Tecomatlán, Puebla
‘Flossie’, el siguiente ciclón, se acerca a México
Sheinbaum elimina Unidad de Maestros que abrió AMLO con inversión millonaria
Con reforma de última hora, Morena busca limitar retiro de dinero en Afores
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.