Cargando, por favor espere...

Cálculo infinitesimal en la espiral de Arquímedes
Arquímedes se había adelantado a los matemáticos de mediados y último tercio del Siglo XVII como Cavalieri, Pascal, Newton y Bernoulli.
Cargando...

Dos herramientas matemáticas de demostración fueron constantes en las obras de Arquímedes: el método exhaustivo, establecido por Eudoxo de Cnido, y el método por reducción al absurdo, formalizado por él mismo. Ambos métodos fueron usados por él; en primer lugar, para calcular áreas del círculo de radio uno, del segmento parabólico y de la espiral que lleva su nombre y, en segundo lugar, para encontrar volúmenes de segmentos de “conoide rectángulo” (paraboloide de revolución), de “conoide obtusángulo” (hiperboloide de revolución) y de esferoide (elipsoide de revolución).

Thomas Little Heath, en su libro The works of Archimedes (págs. 99-188), recoge los trabajos Sobre los conoides y esferoides y Sobre las espirales del sabio de Siracusa. De estas dos obras, me interesa particularmente destacar el trabajo Sobre las espirales, porque, en esta aportación matemática, se vislumbra ya la síntesis del cálculo integral y diferencial. Arquímedes comienza construyendo su espiral partiendo de un punto que se mueve sobre una recta a una velocidad uniforme, recta que gira sobre un punto fijo (origen) con una velocidad angular uniforme.

Para continuar con su investigación, el genio de Siracusa demuestra que el área de dicha espiral, en su primera vuelta, cubre la tercera parte del círculo que la envuelve. La solución a esta afirmación trajo consigo la respuesta a uno de los tres problemas clásicos de la Grecia antigua, el problema de la trisección del ángulo que, con la cuadratura del círculo y la duplicación del cubo, habían resistido los embates de los más eminentes matemáticos griegos.

La espiral de Arquímedes, que “evoca el infinito” y “triseca” ángulos, concentra el cálculo infinitesimal muy desarrollado para su tiempo. Un ejemplo de esta concentración se encuentra en la siguiente proposición: “el área acotada por la primera vuelta de la espiral y la línea inicial es igual a la tercera parte del primer círculo (que la envuelve)” (Proposición 24, pág. 178).

Hoy la ecuación de dicha espiral se puede expresar en coordenadas polares de la forma r (θ)=aθ, donde r es la distancia al origen, a es una constante y θ es el ángulo girado. Se requiere encontrar el área de la espiral cuando el ángulo polar varía de 0 a en relación con el área del círculo circunscrito de radio 2πa. Es inmediato calcular el área de este círculo por medio de la fórmula πr2 = π (2π a)2 y de la espiral, por medio de la integral en coordenadas polares, tomando como integrando la función polar r2/2 en el intervalo [0, 2π]. Usando algunas operaciones básicas de la integral, obtenemos en seguida que π (2π a)2/3, corresponde al área de la espiral, la cual es la tercera parte del primer círculo que la circunscribe. Esta maquinaria matemática, sin embargo, no existía en aquellos tiempos, por eso Arquímedes procede de la siguiente manera: divide el círculo de radio 2π a en sectores de amplitud θ=2π /n; con n en los números naturales. Luego, en cada sector circular, examina el arco de la espiral que queda dentro del mismo sector y acota el área correspondiente a dicho arco de la espiral entre las áreas de dos sectores circulares. Posteriormente calcula el área del sector circular más grande inscrito en cada arco de la espiral y el área del sector circular más pequeño circunscrito a cada arco de la espiral, y por medio del método exhaustivo va cubriendo progresivamente la espiral con cada sector circular inscrito y circunscrito tantas veces como se quiera. Después, suma el área de todos lo sectores circulares más grandes inscritos en cada arco de la espiral y el área de todos los sectores circulares más pequeños circunscritos a cada arco. Finalmente, Arquímedes aplica dos veces el método por reducción al absurdo para comprobar la veracidad de la Proposición 24 de su libro Sobre las espirales.

Con esta aportación, Arquímedes se había adelantado a los matemáticos de mediados y último tercio del Siglo XVII como Cavalieri, Pascal, Newton y Bernoulli, quienes usaron formalmente las coordenadas polares para resolver problemas relativos a áreas, longitud de arcos parabólicos y tangentes respectivamente.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

La idea de aprender sin esfuerzo hace que el conocimiento adquirido en los menores sea volátil, superficial, en desmedro de su capacidad intelectual; y preocupa que cada año el nivel académico e intelectual de niños y jóvenes está decayendo a sitios alarmantes.

La intención es lograr un lente de material blando que logre un acercamiento, en un primer prototipo, de 32 por ciento con respecto a la visualización normal.

La gran pasión científica de Pierre Laplace era establecer matemáticamente la estabilidad de nuestro sistema solar; para ello, se propuso aplicar las leyes de la gravitación de Newton y explicar ciertas perturbaciones observadas en Saturno y Júpiter cuand

La pandemia del Covid-19 es la primera advertencia de un cambio ecológico global al que nos acercamos peligrosamente.

Trece mujeres de la Universidad de Harvard marcaron un punto de inflexión en la historia en una época donde las mujeres generalmente eran excluidas de participar en el ámbito científico.

Hace un par de años tuve dolor muscular, cansancio, fiebre y malestar general; por los síntomas, pensé que era Covid-19; pero tras varias pruebas, el diagnóstico final fue dengue.

El maestro de hoy, no todos desde luego, pero sí la mayoría, ya no enseña a su alumno a razonar y analizar.

Mirar directamente al Sol durante un eclipse puede causar daños irreversibles en la retina, incluso sin sentir dolor; como sucedió en 1991.

Hoy sabemos que forma parte de los números irracionales y que es un número algebraico, al ser solución de una ecuación algebraica.

En este artículo defenderemos, desde la dimensión antropológica de la matemática, una de las afirmaciones que han concitado discusiones entre matemáticos y filósofos.

La reducción de la mariposa monarca en bosques mexicanos, las cuales ocuparon 2.10 hectáreas de terreno -en el primer trimestre del 2021-, respecto a las 2.83 hectáreas registradas en 2019.

Ayer, el Telescopio Espacial James Webb reveló la imagen más clara hasta la fecha del universo primitivo, que se remonta a 13 mil millones de años, dijo la NASA el lunes.

La lucha por el control de los datos personales se traduce en la posibilidad de poder económico, político e ideológico. De manera permanente somos vigilados por empresas y funcionarios.

En la Edad Media se sospechaba que la peste negra era originada por algún agente que entraba en un cuerpo y se trasmitía a otras personas.

“Con esta investigación buscan una solución a la adulteración, que con el paso del tiempo se ha vuelto más sostificada, por lo que los procedimientos analíticos también de ser cada vez mejores”.