Cargando, por favor espere...

Tlaixaxiliztli
Los métodos de Bar Hiyya y Kepler
Sirvan estos dos ejemplos para que los estudiantes mexicanos despierten su interés por el desarrollo histórico de las fórmulas matemáticas.


En la Edad Media, las aportaciones matemáticas al desarrollo del cálculo infinitesimal fueron escasas en comparación con las contribuciones de Eudoxo y Arquímedes. En la primera mitad del Siglo X, el geómetra Ibrahim ibn Sinan ibn Thabit, continuó con las investigaciones realizadas por Arquímedes acerca de áreas de parábolas y volumen de los conoides, pero su método es desconocido por nosotros. En la misma dirección siguió Kamal al-Din (Siglo XIII), quien usó la teoría de las cónicas, desarrolladas por el matemático griego Apolonio de Perga, para resolver problemas de óptica. Los matemáticos Habas al-Hasib al-Marwazi (Siglo IX) y Nasir ad-Din at Tusi (Siglo XIII), por su parte, desarrollaron la teoría de las trigonometrías plana y esférica, aportación significativa que sirvió a los matemáticos y físicos del Renacimiento.

Sin embargo, el método que me interesa destacar, en primer lugar, es el usado por el matemático Abraham Bar Hiyya (principios del Siglo XII), quien para encontrar el área de un círculo de radio R lo dividió en n circunferencias concéntricas con sus respectivos radios, que iban disminuyendo progresivamente hasta hacerse cero. Luego, desde el centro del círculo, levantó una recta perpendicular al diámetro dirigida hacia el Norte. Esta perpendicular la tomó como cateto-altura del triángulo rectángulo, y el otro cateto-base como la circunferencia concéntrica circunscrita extendida en un segmento rectilíneo. Al final, en el cuadrante positivo, quedan colocados todos los triángulos rectángulos con altura, los radios de cada circunferencia circunscrita y base igual a la medida de cada una de ellas. No es difícil notar que todos los triángulos rectángulos quedan inscritos en el triángulo con catetos R y 2πR. El área de éste, en efecto, corresponde al área del círculo de radio R.

La misma técnica es usada para calcular el volumen de una esfera. Primero, se toma la mitad de una esfera. Del centro se levanta una recta perpendicular al diámetro, que es dirigida hacia el polo Norte; a una cierta altura h, se hace un corte circular, que extendido sobre un plano, se convierte en una sección transversal de una pirámide de base triangular, y así sucesivamente para cada corte circular. Al final, frente al lector se erige una pirámide triangular con un número n de secciones transversales. Fijándose detenidamente en la base piramidal, uno se dará cuenta que el cateto más pequeño es igual a R, mientras que el cateto más grande tiene medida 2πR. Calculando el volumen de la pirámide, el cual es: área de la base por la altura h, todo dividido por 3, y sumándole el volumen de la otra pirámide obtenida con la otra mitad de la esfera, se obtiene (4/3)πR3, fórmula que corresponde al volumen de una esfera de radio R.

En segundo lugar, se encuentra el método usado por el matemático Johannes Kepler: éste usó una técnica parecida al matemático Bar Hiyya, pero retomó el método usado por Eudoxo y Arquímedes. Para encontrar el área de un círculo de radio R, en lugar de usar circunferencias concéntricas, Kepler partió el círculo en n rebanadas y las intercaló sobre un plano para formar un rectángulo de ancho r y largo πr. Los lados largos del rectángulo corresponden a las partes curvas de la circunferencia. Calculando el área de este rectángulo se encuentra el área del círculo de radio R.

En el caso de la esfera de radio R, Kepler dividió la superficie esférica en partes infinitesimales (cuadriláteros pequeños), y tomó cada uno de éstos como base de cada una de las pirámides infinitesimales con cúspide de cada una de ellas en el centro de la esfera. Es claro que la altura de cada una de esas pirámides infinitesimales es igual a R. Como el volumen de una pirámide es un tercio del producto de la superficie de la base por su altura, al sumar el volumen de todas las pirámides infinitesimales, Kepler encontró el volumen requerido de la esfera.

Sirvan estos dos ejemplos para que los estudiantes mexicanos despierten su interés por el desarrollo histórico de las fórmulas matemáticas, ya que hoy son usadas como dogmas, sin que el estudiante cuestione su veracidad y origen.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

romeo.jpg

Queda claro que AMLO tiene un desconocimiento abismal acerca de la relación entre la ciencia y la política.

ciencia.jpg

El término “transgénico” significa la inserción de un gen extraño en un organismo, acción propia de la tecnología biológica que consiste en transferir un fragmento del ADN de una célula a otra.

cof4llyu4jgz.jpg

Los Cordyceps infectan insectos que son dominantes y suelen propagarse como plagas

China presenta mini dron espía del tamaño de un mosquito

El mini robot imita con precisión la anatomía de un insecto real.

ph.jpg

A pesar de todas las riquezas que posee África (y que aquí menciono), la gran mayoría de la población vive una situación muy deplorable, lo que representa una gran contradicción.

números.jpg

Para la antigua cultura griega, los números naturales podían tener dos realizaciones, una como elemento de medición (lo llamaban magnitud) y otra como elemento de conteo.

romeo-911.jpg

Hoy sabemos que forma parte de los números irracionales y que es un número algebraico, al ser solución de una ecuación algebraica.

esptiben--977.jpg

Isaac Newton tenía una visión matemática y física del mundo al mismo tiempo que una concepción metafísica y alquimista de la naturaleza que lo hacen admirable entre sus contemporáneos y entre los científicos de hoy.

¿Es posible tener un envejecimiento saludable?

Desde el punto de vista biológico, el envejecimiento humano es la acumulación de diversos daños celulares y moleculares a lo largo del tiempo, lo que lleva a un descenso gradual de las capacidades físicas y mentales.

ci.jpg

Aunque la predicción del reconocido científico menciona específicamente a los Estados Unidos, los temas que reflexiona tienen alcance global.

mate.jpg

Así se titula el curso que impartiré del 22 de marzo al ocho de abril de 2022 en las instalaciones del Instituto Tecnológico de Tecomatlán de manera presencial y virtual.

FBI reporta nuevo fraude por medio de Gmail

Los estafadores ingresan a la información personal del usuario, roban datos bancarios y utilizan la dirección de correo para lanzar ataques a otros contactos.

Alembert.jpg

Desde el punto de vista filosófico, D’Álembert era partidario de la unidad del saber, proponía el progreso de la humanidad a través del desarrollo de la ciencia, unificadas por una filosofía desprendida de los mitos y creencias transcendentales.

virus.jpg

En la Edad Media se sospechaba que la peste negra era originada por algún agente que entraba en un cuerpo y se trasmitía a otras personas.

México frente al gusano barrenador: historia, riesgos y la batalla para erradicarlo

(El retorno del gusano barrenador: responsabilidades y la batalla para erradicarlo)