Cargando, por favor espere...
En la Edad Media, las aportaciones matemáticas al desarrollo del cálculo infinitesimal fueron escasas en comparación con las contribuciones de Eudoxo y Arquímedes. En la primera mitad del Siglo X, el geómetra Ibrahim ibn Sinan ibn Thabit, continuó con las investigaciones realizadas por Arquímedes acerca de áreas de parábolas y volumen de los conoides, pero su método es desconocido por nosotros. En la misma dirección siguió Kamal al-Din (Siglo XIII), quien usó la teoría de las cónicas, desarrolladas por el matemático griego Apolonio de Perga, para resolver problemas de óptica. Los matemáticos Habas al-Hasib al-Marwazi (Siglo IX) y Nasir ad-Din at Tusi (Siglo XIII), por su parte, desarrollaron la teoría de las trigonometrías plana y esférica, aportación significativa que sirvió a los matemáticos y físicos del Renacimiento.
Sin embargo, el método que me interesa destacar, en primer lugar, es el usado por el matemático Abraham Bar Hiyya (principios del Siglo XII), quien para encontrar el área de un círculo de radio R lo dividió en n circunferencias concéntricas con sus respectivos radios, que iban disminuyendo progresivamente hasta hacerse cero. Luego, desde el centro del círculo, levantó una recta perpendicular al diámetro dirigida hacia el Norte. Esta perpendicular la tomó como cateto-altura del triángulo rectángulo, y el otro cateto-base como la circunferencia concéntrica circunscrita extendida en un segmento rectilíneo. Al final, en el cuadrante positivo, quedan colocados todos los triángulos rectángulos con altura, los radios de cada circunferencia circunscrita y base igual a la medida de cada una de ellas. No es difícil notar que todos los triángulos rectángulos quedan inscritos en el triángulo con catetos R y 2πR. El área de éste, en efecto, corresponde al área del círculo de radio R.
La misma técnica es usada para calcular el volumen de una esfera. Primero, se toma la mitad de una esfera. Del centro se levanta una recta perpendicular al diámetro, que es dirigida hacia el polo Norte; a una cierta altura h, se hace un corte circular, que extendido sobre un plano, se convierte en una sección transversal de una pirámide de base triangular, y así sucesivamente para cada corte circular. Al final, frente al lector se erige una pirámide triangular con un número n de secciones transversales. Fijándose detenidamente en la base piramidal, uno se dará cuenta que el cateto más pequeño es igual a R, mientras que el cateto más grande tiene medida 2πR. Calculando el volumen de la pirámide, el cual es: área de la base por la altura h, todo dividido por 3, y sumándole el volumen de la otra pirámide obtenida con la otra mitad de la esfera, se obtiene (4/3)πR3, fórmula que corresponde al volumen de una esfera de radio R.
En segundo lugar, se encuentra el método usado por el matemático Johannes Kepler: éste usó una técnica parecida al matemático Bar Hiyya, pero retomó el método usado por Eudoxo y Arquímedes. Para encontrar el área de un círculo de radio R, en lugar de usar circunferencias concéntricas, Kepler partió el círculo en n rebanadas y las intercaló sobre un plano para formar un rectángulo de ancho r y largo πr. Los lados largos del rectángulo corresponden a las partes curvas de la circunferencia. Calculando el área de este rectángulo se encuentra el área del círculo de radio R.
En el caso de la esfera de radio R, Kepler dividió la superficie esférica en partes infinitesimales (cuadriláteros pequeños), y tomó cada uno de éstos como base de cada una de las pirámides infinitesimales con cúspide de cada una de ellas en el centro de la esfera. Es claro que la altura de cada una de esas pirámides infinitesimales es igual a R. Como el volumen de una pirámide es un tercio del producto de la superficie de la base por su altura, al sumar el volumen de todas las pirámides infinitesimales, Kepler encontró el volumen requerido de la esfera.
Sirvan estos dos ejemplos para que los estudiantes mexicanos despierten su interés por el desarrollo histórico de las fórmulas matemáticas, ya que hoy son usadas como dogmas, sin que el estudiante cuestione su veracidad y origen.
El arribo de la mariposa constituye uno de los mayores atractivos turísticos de la entidad, el cual genera empleo y recursos económicos.
Marx añade: “… por más que la mayor fuente de suicidios corresponda principalmente a la miseria, los encontramos en todas las clases, entre los ociosos ricos tanto como entre artistas y políticos”.
La polinización es considerada fundamental para el bienestar humano. Sin embargo, esta actividad está en peligro por la baja en las poblaciones de polinizadores dado el calentamiento global, y la degradación del aire, el agua y el suelo.
Es considerado el más prolífico de los matemáticos; su nombre figura en fórmulas, teoremas, números, integrales y constantes en distintas ramas de la matemática.
El Cometa Diablo, compuesto de criomagma, una amalgama de hielo, polvo y gas, presenta una estructura peculiar.
Los humanos, a diferencia de los animales, son enseñados en familias, escuelas y grupos humanos insertos en sociedades cambiantes en términos estructurales e ideológicos.
“(La sesión) fue aplazada en aras de garantizar el estricto apego a las disposiciones normativas relativas al proceso de notificación”, se lee en el comunicado.
La superación de la que habla Marx no niega por completo lo anteriormente construido por la tradición, sino que lo integra y, en algunos casos, lo supone. Aquí lo explico.
Saihanba, combinación de chino y mongol, es el nombre del bosque artificial más grande del mundo. Su objetivo, proteger a Beijing, azotada por tormentas de arena debido a la desertificación de sus alrededores.
Este telescopio espacial fue lanzado el sábado mediante el cohete Ariane 5 y es un proyecto liderado por la NASA.
Si la incidencia de plagas y enfermedades no acaba con los bosques, sí reduce significativamente su actividad fotosintética. En los tiempos que corren esto contribuye al calentamiento global.
"Hemos visto con nuestros ojos y sentido bajo nuestros pies cómo muere el Ártico", explicó en declaraciones a la televisión pública ARD el jefe de la expedición, Markus Rex.
Científicos descubrieron en estos días un exoplaneta en órbita a una de las dos estrellas pequeñas de un sistema binario ubicado a unos 100 años luz de la Tierra.
En matemática, los pitagóricos demostraron que: la suma de las medidas de los ángulos interiores de un triángulo es 180°.
Isaac Newton tenía una visión matemática y física del mundo al mismo tiempo que una concepción metafísica y alquimista de la naturaleza que lo hacen admirable entre sus contemporáneos y entre los científicos de hoy.
Rusia y México conmemoran la victoria soviética sobre el nazismo
Ley Censura de la 4T: acallar las voces críticas y la libertad de expresión
El periodismo escrito en la era tecnológica
Conmemora Rusia el 80 Aniversario del ‘Día de la Victoria’
El desinterés de la 4T por las mujeres
¡Oxígeno con fecha de expiración!; Nasa da a conocer nuevo estudio
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.