Cargando, por favor espere...
A mediados del Siglo XVIII, el régim m en político en Europa era el absolutismo monárquico por derecho divino, causando una profunda desigualdad entre las personas y clases sociales, como respuesta, a esta situación surgió un movimiento llamado Ilustración o Enciclopedismo, formado por burgueses, aristócratas, filósofos y economistas, quienes criticaban las instituciones existentes, proponiendo nuevos sistemas que dieran a las personas igualdad y bienestar. Filósofos como Montesquieu, Voltaire, Rousseau y Diderot fueron los principales ideólogos de este movimiento.
En Francia, un poderoso instrumento para estas nuevas ideas filosóficas fue la Enciclopedia (28 volúmenes) o Diccionario razonado de las ciencias, las artes y los oficios. Esta obra monumental también contenía ideas contra el régimen monárquico absoluto; por eso, en dos ocasiones fue prohibida por el gobierno, quien consideró que instigaba la rebelión contra Dios y el rey.
La parte matemática y filosófica de la Enciclopedia fue encargada a uno de los grandes matemáticos franceses de la época, Jean D’Álembert (1717–1783). D’Álembert nació en París y fue abandonado por su madre en las escaleras de una iglesia; tiempo después fue rescatado por su padre, un general de artillería, para darle una mejor educación. Estudió derecho y medicina, estudios que abandonó para seguir su pasión: la matemática. Por sus trabajos matemáticos a los 23 años logró ser miembro de la Académica de Ciencias de París.
En 1743, D’Álembert publicó una de sus más destacadas obras: Tratado de Dinámica, inventando el principio que hoy día lleva su nombre: En un sistema, las fuerzas internas de inercia son iguales y opuestas a las fuerzas que producen la aceleración. En 1747 usó este principio para establecer el Problema de la cuerda vibrante, modelado por la siguiente ecuación: , para el cual dio la solución: u=f(x+t)+g(x-t), donde f y g son funciones arbitrarias.
En 1752 D’Álembert llega a establecer lo que hoy conocemos como Ecuaciones de Cauchy – Riemann: y donde ∂u y ∂v son diferenciales
Escribe D’Álembert, en 1761, Sobre los logaritmos de las cantidades negativas, entrando en disputa con Leonard Euler, que demuestra que D’Álembert estaba equivocado al considerar log(-1) = log(+1). Sin embargo, en su obra también estudia (a+bi)(p+qi) considerando (a+bi) como una variable, siendo el precursor de lo que hoy llamamos Cálculo de Variable Compleja.
Lo más polémico de las ideas matemáticas de D’Álembert, fue su concepción del infinito, el cual consideraba como el límite de cantidades finitas, en el sentido que puede ser igual a un número tan grande como se quiera. Llegando a afirmar que: “Una cantidad es algo a nada; si es algo, aún no se ha desvanecido; y si no es nada, ya se ha desvanecido literalmente. La suposición que hay un estado intermedio entre éstas dos es una quimera”. Lo que conduce a rechazar las cantidades evanescentes de Newton y el concepto de diferencial de Leibniz. Esta idea de D’Álembert terminó de sucumbir ante el prestigio académico de Newton y Leibniz.
Desde el punto de vista filosófico, D’Álembert era partidario de la unidad del saber, fundamentado en una especie de síntesis entre racionalismo y empirismo. Además, proponía el progreso de la humanidad a través del desarrollo de la ciencia, unificadas por una filosofía desprendida de los mitos y creencias transcendentales.
D’Álembert poseía un carácter polémico y desafiante que lo llevó a entablar constantes disputas con filósofos de la época y con matemáticos como Leonard Euler y Daniel Bernoulli. Sin embargo, D’Álembert fue un gran escritor. En una ocasión escribió: “La imaginación de un matemático creador no dista mucho de la de un poeta inventivo. Entre todos los grandes hombre de la antigüedad, Arquímedes bien puede ser quien más merece ser situado junto a Homero”
D’Álembert murió en 1772, a los 64 años, y fue enterrado muy modestamente, solo acompañado por su amigo y filósofo Nicolás Condorcet (1743-1794).
La disminución de la biodiversidad podría aumentar el riesgo de enfermedades crónicas para la humanidad.
Durante la última década en el Reino Unido, se han identificado 19 nuevos mecanismos genéticos de resistencia en bacterias.
La idea de aprender sin esfuerzo hace que el conocimiento adquirido en los menores sea volátil, superficial, en desmedro de su capacidad intelectual; y preocupa que cada año el nivel académico e intelectual de niños y jóvenes está decayendo a sitios alarmantes.
Las lombrices desempeñan un papel fundamental en la producción de granos; sin ellas no podríamos comer pan dulce ni esos deliciosos bolillos recién horneados o tortillas recién salidas del comal.
En esta era digital somos aparentemente libres de hacer público lo que pensamos y sentimos; de compartir a dónde viajamos y de comprar una infinidad de mercancías. Pero esta “libertad” choca con el obstáculo económico.
El sustento del conocimiento matemático se desarrolló en la antigua Grecia; uno de los filósofos que contribuyó a su desarrollo fue Aristóteles, quien planteó las leyes básicas del pensamiento humano a fin de obtener deducciones válidas.
Las guerras biológicas permiten combatir a los enemigos sin confrontarse físicamente y han sido practicadas a lo largo de la historia. Los primeros usos de agentes biológicos se remontan a tres mil 500 años.
Los fractales son estructuras cuyo patrón se repite a diferentes escalas y casi de manera infinita. Están presentes prácticamente en todos los aspectos de nuestro entorno, casi ocultos a simple vista.
Svante Pääbo logró secuenciar el ADN de los neandertales, la especie de homínido más emparentada con los seres humanos actuales, y que se extinguió hace 30 mil años.
En las ideas de Anaximandro no estaban presentes ideas esenciales de la ciencia moderna.
El 8 de abril será la fecha clave y también será la primera vez que se intente volar un dispositivo en otro planeta.
Sirvan estos dos ejemplos para que los estudiantes mexicanos despierten su interés por el desarrollo histórico de las fórmulas matemáticas.
“La extinción de especies es uno de los grandes problemas ambientales y, junto con el cambio climático y un holocausto nuclear, podrían colapsar la civilización”, planteó el ecólogo mexicano Gerardo Ceballos.
Las matemáticas dieron orden al caos. Dan certeza en el momento que se vive y ayudan a comprender y medir los fenómenos que rodean a las personas.
Si existen o no está sujeto a lo que concebimos como realidad, misma que es relativa, existe una realidad capturada por nuestros sentidos y una realidad inventada que sólo existe conceptualmente en la mente humana.
Congreso de la CDMX recibe el PEF 2025; habrá aumentos a las 16 alcaldías
Por derroche, en Guanajuato suspenden Fideicomiso
No desparece en el Congreso de la CDMX la moción suspensiva
Aumentarán impuestos para gasolina, refresco y cigarros; IEPS
Policías se enfrentan a comerciantes en villa navideña
Por bajos precios, limoneros tiran su producto antes que malbaratar su trabajo
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador