Cargando, por favor espere...
A mediados del Siglo XVIII, el régim m en político en Europa era el absolutismo monárquico por derecho divino, causando una profunda desigualdad entre las personas y clases sociales, como respuesta, a esta situación surgió un movimiento llamado Ilustración o Enciclopedismo, formado por burgueses, aristócratas, filósofos y economistas, quienes criticaban las instituciones existentes, proponiendo nuevos sistemas que dieran a las personas igualdad y bienestar. Filósofos como Montesquieu, Voltaire, Rousseau y Diderot fueron los principales ideólogos de este movimiento.
En Francia, un poderoso instrumento para estas nuevas ideas filosóficas fue la Enciclopedia (28 volúmenes) o Diccionario razonado de las ciencias, las artes y los oficios. Esta obra monumental también contenía ideas contra el régimen monárquico absoluto; por eso, en dos ocasiones fue prohibida por el gobierno, quien consideró que instigaba la rebelión contra Dios y el rey.
La parte matemática y filosófica de la Enciclopedia fue encargada a uno de los grandes matemáticos franceses de la época, Jean D’Álembert (1717–1783). D’Álembert nació en París y fue abandonado por su madre en las escaleras de una iglesia; tiempo después fue rescatado por su padre, un general de artillería, para darle una mejor educación. Estudió derecho y medicina, estudios que abandonó para seguir su pasión: la matemática. Por sus trabajos matemáticos a los 23 años logró ser miembro de la Académica de Ciencias de París.
En 1743, D’Álembert publicó una de sus más destacadas obras: Tratado de Dinámica, inventando el principio que hoy día lleva su nombre: En un sistema, las fuerzas internas de inercia son iguales y opuestas a las fuerzas que producen la aceleración. En 1747 usó este principio para establecer el Problema de la cuerda vibrante, modelado por la siguiente ecuación: , para el cual dio la solución: u=f(x+t)+g(x-t), donde f y g son funciones arbitrarias.
En 1752 D’Álembert llega a establecer lo que hoy conocemos como Ecuaciones de Cauchy – Riemann: y donde ∂u y ∂v son diferenciales
Escribe D’Álembert, en 1761, Sobre los logaritmos de las cantidades negativas, entrando en disputa con Leonard Euler, que demuestra que D’Álembert estaba equivocado al considerar log(-1) = log(+1). Sin embargo, en su obra también estudia (a+bi)(p+qi) considerando (a+bi) como una variable, siendo el precursor de lo que hoy llamamos Cálculo de Variable Compleja.
Lo más polémico de las ideas matemáticas de D’Álembert, fue su concepción del infinito, el cual consideraba como el límite de cantidades finitas, en el sentido que puede ser igual a un número tan grande como se quiera. Llegando a afirmar que: “Una cantidad es algo a nada; si es algo, aún no se ha desvanecido; y si no es nada, ya se ha desvanecido literalmente. La suposición que hay un estado intermedio entre éstas dos es una quimera”. Lo que conduce a rechazar las cantidades evanescentes de Newton y el concepto de diferencial de Leibniz. Esta idea de D’Álembert terminó de sucumbir ante el prestigio académico de Newton y Leibniz.
Desde el punto de vista filosófico, D’Álembert era partidario de la unidad del saber, fundamentado en una especie de síntesis entre racionalismo y empirismo. Además, proponía el progreso de la humanidad a través del desarrollo de la ciencia, unificadas por una filosofía desprendida de los mitos y creencias transcendentales.
D’Álembert poseía un carácter polémico y desafiante que lo llevó a entablar constantes disputas con filósofos de la época y con matemáticos como Leonard Euler y Daniel Bernoulli. Sin embargo, D’Álembert fue un gran escritor. En una ocasión escribió: “La imaginación de un matemático creador no dista mucho de la de un poeta inventivo. Entre todos los grandes hombre de la antigüedad, Arquímedes bien puede ser quien más merece ser situado junto a Homero”
D’Álembert murió en 1772, a los 64 años, y fue enterrado muy modestamente, solo acompañado por su amigo y filósofo Nicolás Condorcet (1743-1794).
A partir de este primero de diciembre, dispositivos como Winko, Iphone, ZTE dejarán de ser compatibles con la aplicación de WhatsApp.
El desarrollo de la investigación matemática ha sido tan espectacular, que abarcar todo el conocimiento actual de la matemática se ha vuelto imposible para cualquier ser humano.
El movimiento pedagógico “matemática moderna”, de los años 50-60 del s. XX, trajo consecuencias funestas en la educación; por ello, en los años 70, matemáticos como Morris Kline, escribieron este libro que a nuestro juicio tiene actual vigencia.
Esencialmente el método filosófico propuesto por René Descartes tenía una inspiración matemática, a saber: No admitir nada absolutamente evidente.
“Un lugar como nosotros depende totalmente del ingreso de los visitantes, dependemos de que los visitantes hagan el pago de su boleto para vivir la experiencia", dijo el director general.
¿Alguna vez te has preguntado cómo es que podemos caminar, correr, pensar, sentir o platicar con otros? De todo eso se encargan las neuronas, su función es importantísima, aquí te cuento porqué y cómo funcionan.
El 8 de abril será la fecha clave y también será la primera vez que se intente volar un dispositivo en otro planeta.
Congestión nasal, dolor de cabeza, estornudos, fiebre baja, escalofríos… son algunos de los síntomas más comunes del resfriado y la gripe y, aunque todos hemos pasado alguna vez por este malestar, no todo el mundo presenta la misma inmunidad o defensas.
Unas bacterias que han sembrado el miedo entre los científicos son los fitoplasmas, una amenaza para la producción de alimentos, sin embargo, a pesar de ello, causan algo sorprendente en las plantas.
Un molar de al menos 130 mil años de antigüedad encontrado en una cueva de Laos, en el sureste asiático, podría ser clave para arrojar nueva luz sobre los denisovanos, especie poco conocida descubierta en 2010.
El estudio de Venus en la década de 1960 alertó a la comunidad científica sobre las consecuencias ambientales por el aumento de dióxido de carbono (CO2) en la atmósfera terrestre.
Hijo de un sastre, huérfano a los ocho años. En 1812 escribió la obra cumbre de su carrera científica, la Teoría Analítica del Calor, por la que ganó un premio de la Academia de Ciencias de París.
En este artículo defenderemos, desde la dimensión antropológica de la matemática, una de las afirmaciones que han concitado discusiones entre matemáticos y filósofos.
Además de generar beneficios importantes para los suelos, la materia orgánica contribuye al amortiguamiento de agentes contaminantes. Sin embargo, las actividades humanas han provocado que en el 42% de nuestro territorio los suelos estén casi inservibles.
Solo es necesario que una fracción del hielo antártico se derrita para causar estragos en el nivel geológico en nuestro planeta. Un incremento del nivel del mar que supere los dos metros de altura pondría en peligro a 770 millones de personas.
Autorizan portación de armas a funcionarios de Pemex y CFE
Palestinos en la inanición; Gaza vive la peor crisis alimentaria desde octubre de 2023
Sonarán celulares en el Primer Simulacro Nacional 2025
Después de 4 años, concluyen parcialmente línea de Trolebús Chalco - Santa Martha
México gastan 180 mdp por desaparecidos: 1,500 pesos por persona
Por casos de violencia, padres de familia bloquean avenida Insurgentes
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador