Cargando, por favor espere...
El cálculo infinitesimal, que estudia la unidad de la “discreción y la continuidad” en el mundo de lo infinitamente pequeño, emergió de la fusión entre el método exhaustus de Eudoxo y el método reductio ad absurdum formalizado por Arquímedes. Este último consiste en demostrar que una proposición es verdadera, suponiendo que si no lo fuera, llevaría a una contradicción, por lo tanto, no queda más que ser verdadera. Por ejemplo, para demostrar que raíz de dos es irracional, se niega esta afirmación suponiendo que es racional; después, por medio de una serie de argumentos lógicamente encadenados, se llega a una contradicción. Lo que demuestra que la raíz de dos es un número irracional. Ejemplos de este tipo abundan en la naturaleza matemática, como la proposición sobre la infinitud de los números primos, demostrada por Euclides de Alejandría.
Los métodos exhaustivo y reducción al absurdo fueron usados por Arquímedes para demostrar que el área de un polígono inscrito en un círculo de radio uno y el área de un polígono con el mismo número de lados, pero circunscrito al mismo círculo, coincidían. Arquímedes construyó dos polígonos de 96 lados: uno inscrito y otro circunscrito. Aplicando el método exhaustivo de Eudoxo, encontró el área del polígono inscrito, equivalente a 3.140845 y el del polígono circunscrito a 3.142857. La deducción lógica era: si continuaban aumentando los lados de ambos polígonos, las áreas en algún momento tendrían que ser iguales, pero demostrar esta aseveración, geométricamente, era imposible. Aquí es donde Arquímedes magistralmente implementó el método por reducción al absurdo: supuso que las áreas encontradas no eran iguales y, a partir de ello, construyó argumentos lógicos que lo llevaron a una contradicción.
El método reductio ad absurdum, al lado del método exhaustivo, se volvió una herramienta de mucha utilidad entre los griegos para calcular áreas bajo cualquier tipo de curvas. En particular, el área del segmento parabólico, es decir, el área limitada por una parábola y una recta secante a ella. Para ejemplificar, consideremos una parábola abierta hacia abajo que se intersecta con el eje X en A y B. Para agotar el área del segmento parabólico, Arquímedes procedió más o menos de la siguiente manera: trazó un triángulo APB con vértice P en el punto medio del arco de la parábola y los vértices A y B como puntos de intersección de la parábola con el eje X. Posteriormente, al área del segmento parabólico, le restó el área del triángulo APB, quedando, solamente dentro de la parábola, dos segmentos parabólicos menores (dos cuerdas AP y BP). Tomando como base estas cuerdas, construyó dos triángulos nuevos ARP y PQB, con R y Q como puntos medios, respectivamente, de los dos arcos restantes. Arquímedes demostró que el área de cada uno de estos triángulos era igual a una octava parte del triángulo APB. Siguiendo el mismo proceso, volvió a restarle al área del segmento parabólico inicial, las áreas de los triángulos ARP y PQB, quedando ahora cuatro cuerdas: AR, RP, PQ y QB, con los que formó cuatro triángulos y, de la misma manera, demostró que el área de cada uno de estos nuevos triángulos era la octava parte de cada uno de los dos triángulos anteriores. Así continuó ad infinitum y estimó el área total de los triángulos inscritos como cuatro terceras partes del triángulo inicial APB. Como ya se puede observar, estimado lector, al sumar las áreas de todos los triángulos construidos en el interior de la parábola, resulta que dicha suma casi coincide con el área del segmento parabólico. Nuevamente, por reducción al absurdo, Arquímedes demostró que las áreas coincidían y, por tanto, se comprobó que el área del segmento parabólico es igual a cuatro terceras partes del triángulo APB.
Los métodos proporcionados por Eudoxo y Arquímedes, hace más de dos mil años, son usados hoy para calcular áreas con cualquier tipo de curvas y volúmenes y con cualquier tipo de superficies. Ambos métodos fueron retomados posteriormente por el alemán Johannes Kepler para resolver problemas de sólidos de revolución, y por el italiano Bonaventura Cavalieri para crear su principio conocido como principio de Cavalieri. Hoy, los métodos exhaustivo y de reducción al absurdo son los pilares sobre los que se edifica toda la estructura matemática del cálculo infinitesimal.
A pesar de que el cohete no podrá aterrizar en la luna, el Instituto de la UNAM consideró que sí se han alcanzado los propósitos de la misión Colmena, toda vez que han podido articular conocimientos tecnocientíficos y formación académica.
Dos especies vegetales que no corren con la misma suerte cuando llegan las festividades navideñas.
Con la muerte de Arquímedes se inicia el ocaso de los griegos, en el año 146 a.C. los romanos invadieron Cartago y el Mediterráneo, menos Egipto.
Las consecuencias del calentamiento global antropogénico están ocurriendo con una rapidez mayor a la pronosticada por la comunidad científica.
Los métodos proporcionados por Eudoxo y Arquímedes, hace más de dos mil años, son usados hoy para calcular áreas con cualquier tipo de curvas y volúmenes.
La historia de esa constante comenzó desde que el hombre tuvo necesidad de construir pirámides con bases circulares y cilíndricas, como lo demuestran los papiros de Ahmes y Moscú.
Por primera vez en la historia, médicos trasplantaron un riñón genéticamente modificado de un cerdo para un ser humano vivo.
Después de un mes repleto de celebraciones en el que la población adorna sus casas, hace regalos, convive y festeja, podemos preguntarnos: ¿cuál es el costo ambiental de las fiestas navideñas y de fin de año?
Luego de haber agotado todas las vías para exigir legalidad, la comunidad del CIDE dio a conocer por medio de una publicación que cerrarán la carretera México Toluca en defensa de la institución.
Alrededor de 20 especies de ciempiés podrían ser clave en el desarrollo de nuevos tratamientos médicos.
El mundo generó más electricidad a partir de combustibles fósiles en 2020 que en 2015, año en que 190 países firmaron el Acuerdo de París y se comprometieron a reducir la emisión de gases de efecto invernadero.
Crowdstrike sufrió una interrupción global que afectó a aeropuertos, bancos y otras empresas a nivel mundial.
El aspecto físico no es suficiente para convencer a las parejas y, como sucede con los pájaros, entonces se recurre al talento artístico mediante serenatas y bailes elaborados.
Si te gustan las matemáticas y te interesa conocer qué características debe tener un sistema de axiomas, aquí te detallo. Son tres: compatibilidad, independencia y completitud (idealmente).
¿Es posible encontrar la cuadratura de una figura geométrica? la respuesta en este texto. La cuadratura de una figura geométrica consiste en encontrar exactamente su área en un cuadrado.
Trump confirma que sí impondrá aranceles del 25% a productos mexicanos
Hermana de Martí Batres y Morena buscan legalizar despojos en CDMX
¡Arancel Vs Arancel! Trudeau promete contramedidas
México presente en Foro Económico Mundial de Davos 2025
Desplazados de San Pedro El Alto, entre una crisis humanitaria y el desdén del gobernador
Inicia deportación migratoria tras decreto de Trump
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.