Cargando, por favor espere...
El cálculo infinitesimal, que estudia la unidad de la “discreción y la continuidad” en el mundo de lo infinitamente pequeño, emergió de la fusión entre el método exhaustus de Eudoxo y el método reductio ad absurdum formalizado por Arquímedes. Este último consiste en demostrar que una proposición es verdadera, suponiendo que si no lo fuera, llevaría a una contradicción, por lo tanto, no queda más que ser verdadera. Por ejemplo, para demostrar que raíz de dos es irracional, se niega esta afirmación suponiendo que es racional; después, por medio de una serie de argumentos lógicamente encadenados, se llega a una contradicción. Lo que demuestra que la raíz de dos es un número irracional. Ejemplos de este tipo abundan en la naturaleza matemática, como la proposición sobre la infinitud de los números primos, demostrada por Euclides de Alejandría.
Los métodos exhaustivo y reducción al absurdo fueron usados por Arquímedes para demostrar que el área de un polígono inscrito en un círculo de radio uno y el área de un polígono con el mismo número de lados, pero circunscrito al mismo círculo, coincidían. Arquímedes construyó dos polígonos de 96 lados: uno inscrito y otro circunscrito. Aplicando el método exhaustivo de Eudoxo, encontró el área del polígono inscrito, equivalente a 3.140845 y el del polígono circunscrito a 3.142857. La deducción lógica era: si continuaban aumentando los lados de ambos polígonos, las áreas en algún momento tendrían que ser iguales, pero demostrar esta aseveración, geométricamente, era imposible. Aquí es donde Arquímedes magistralmente implementó el método por reducción al absurdo: supuso que las áreas encontradas no eran iguales y, a partir de ello, construyó argumentos lógicos que lo llevaron a una contradicción.
El método reductio ad absurdum, al lado del método exhaustivo, se volvió una herramienta de mucha utilidad entre los griegos para calcular áreas bajo cualquier tipo de curvas. En particular, el área del segmento parabólico, es decir, el área limitada por una parábola y una recta secante a ella. Para ejemplificar, consideremos una parábola abierta hacia abajo que se intersecta con el eje X en A y B. Para agotar el área del segmento parabólico, Arquímedes procedió más o menos de la siguiente manera: trazó un triángulo APB con vértice P en el punto medio del arco de la parábola y los vértices A y B como puntos de intersección de la parábola con el eje X. Posteriormente, al área del segmento parabólico, le restó el área del triángulo APB, quedando, solamente dentro de la parábola, dos segmentos parabólicos menores (dos cuerdas AP y BP). Tomando como base estas cuerdas, construyó dos triángulos nuevos ARP y PQB, con R y Q como puntos medios, respectivamente, de los dos arcos restantes. Arquímedes demostró que el área de cada uno de estos triángulos era igual a una octava parte del triángulo APB. Siguiendo el mismo proceso, volvió a restarle al área del segmento parabólico inicial, las áreas de los triángulos ARP y PQB, quedando ahora cuatro cuerdas: AR, RP, PQ y QB, con los que formó cuatro triángulos y, de la misma manera, demostró que el área de cada uno de estos nuevos triángulos era la octava parte de cada uno de los dos triángulos anteriores. Así continuó ad infinitum y estimó el área total de los triángulos inscritos como cuatro terceras partes del triángulo inicial APB. Como ya se puede observar, estimado lector, al sumar las áreas de todos los triángulos construidos en el interior de la parábola, resulta que dicha suma casi coincide con el área del segmento parabólico. Nuevamente, por reducción al absurdo, Arquímedes demostró que las áreas coincidían y, por tanto, se comprobó que el área del segmento parabólico es igual a cuatro terceras partes del triángulo APB.
Los métodos proporcionados por Eudoxo y Arquímedes, hace más de dos mil años, son usados hoy para calcular áreas con cualquier tipo de curvas y volúmenes y con cualquier tipo de superficies. Ambos métodos fueron retomados posteriormente por el alemán Johannes Kepler para resolver problemas de sólidos de revolución, y por el italiano Bonaventura Cavalieri para crear su principio conocido como principio de Cavalieri. Hoy, los métodos exhaustivo y de reducción al absurdo son los pilares sobre los que se edifica toda la estructura matemática del cálculo infinitesimal.
En México hay aproximadamente dos mil especies de abejas nativas. A diferencia de las melíferas, que viven en colonias (colmenas) con su reina y obreras, la mayoría de las nativas son solitarias.
La comunicación no es la única ni es exclusiva de los seres humanos. Acá te contamos por qué.
Gran parte del problema ecológico está resuelto hoy día. ¿Qué falta? La ciencia tiene la razón, pero ahora reina la irracionalidad. ¿Quién debe parar esta locura? Los que la sufren. La gran mayoría no tiene consciencia de esto.
“Caffarelli tiene una intuición fantástica, es sencillamente notable… me costó mucho seguirle el ritmo. De algún modo, ve inmediatamente cosas que los otros no ven”, afirmó el afamado matemático Louis Nirenberg.
Los moquitos tienen un sentido del olfato sumamente fino.
Las plantas no florecen en primavera, después del invierno, por casualidad. En realidad, la producción de flores ocurre como consecuencia de una “planeación”.
En este artículo no hablaré de los libros que son útiles para la enseñanza, ni de divulgación, me centraré en libros estrictos de la disciplina. Aunque la matemática y la filosofía son distintos, tienen elementos en común.
Investigadores del Instituto de Ingeniería (II) de la UNAM atribuyen la generación de microsismos en la CDMX a la falla sísmica denominada Plateros-Mixcoac localizada en la alcaldía Álvaro Obregón.
El desequilibrio hídrico ha dejado sin agua a casi 3 mil millones de personas alrededor del mundo
La historia de esa constante comenzó desde que el hombre tuvo necesidad de construir pirámides con bases circulares y cilíndricas, como lo demuestran los papiros de Ahmes y Moscú.
“Prohibir el fentanilo en la práctica es quitarle a los enfermos el derecho a vivir sin dolor, es retroceder varios años en la historia”, sostuvieron médicos y científicos ante la propuesta de AMLO de prohibir el fentanilo en la medicina.
El medio chino People's Daily dio a conocer al nuevo miembro de su equipo de noticias: Ren Xiaorong, una presentadora digital impulsada por inteligencia artificial (IA).
El desarrollo de la sociedad planteó nuevos retos que propiciaron la creación de nuevas herramientas, que ayudaron a encontrar el área exacta de un círculo de radio uno.
México cerró su participación en el sexto lugar general de 55 naciones participantes.
Fermat nunca publicó un artículo matemático, todos sus aportes eran mediante cartas personales, sin embargo sus conjeturas fueron importantes para el desarrollo matemático.
Cierran avenida Izazaga; comerciantes exigen a Ebrad que los deje trabajar
Congreso de la CDMX recibe el PEF 2025; habrá aumentos a las 16 alcaldías
Por derroche, en Guanajuato suspenden Fideicomiso
No desparece en el Congreso de la CDMX la moción suspensiva
Aumentarán impuestos para gasolina, refresco y cigarros; IEPS
Policías se enfrentan a comerciantes en villa navideña
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.