Cargando, por favor espere...

Arquímedes y el cálculo infinitesimal
Los métodos proporcionados por Eudoxo y Arquímedes, hace más de dos mil años, son usados hoy para calcular áreas con cualquier tipo de curvas y volúmenes.
Cargando...

El cálculo infinitesimal, que estudia la unidad de la “discreción y la continuidad” en el mundo de lo infinitamente pequeño, emergió de la fusión entre el método exhaustus de Eudoxo y el método reductio ad absurdum formalizado por Arquímedes. Este último consiste en demostrar que una proposición es verdadera, suponiendo que si no lo fuera, llevaría a una contradicción, por lo tanto, no queda más que ser verdadera. Por ejemplo, para demostrar que raíz de dos es irracional, se niega esta afirmación suponiendo que es racional; después, por medio de una serie de argumentos lógicamente encadenados, se llega a una contradicción. Lo que demuestra que la raíz de dos es un número irracional. Ejemplos de este tipo abundan en la naturaleza matemática, como la proposición sobre la infinitud de los números primos, demostrada por Euclides de Alejandría.

Los métodos exhaustivo y reducción al absurdo fueron usados por Arquímedes para demostrar que el área de un polígono inscrito en un círculo de radio uno y el área de un polígono con el mismo número de lados, pero circunscrito al mismo círculo, coincidían. Arquímedes construyó dos polígonos de 96 lados: uno inscrito y otro circunscrito. Aplicando el método exhaustivo de Eudoxo, encontró el área del polígono inscrito, equivalente a 3.140845 y el del polígono circunscrito a 3.142857. La deducción lógica era: si continuaban  aumentando los lados de ambos polígonos, las áreas en algún momento tendrían que ser iguales, pero demostrar esta aseveración, geométricamente, era imposible. Aquí es donde Arquímedes magistralmente implementó el método por reducción al absurdo: supuso que las áreas encontradas no eran iguales y, a partir de ello, construyó argumentos lógicos que lo llevaron a una contradicción.  

El método reductio ad absurdum, al lado del método exhaustivo, se volvió una herramienta de mucha utilidad entre los griegos para calcular áreas bajo cualquier tipo de curvas. En particular, el área del segmento parabólico, es decir, el área limitada por una parábola y una recta secante a ella. Para ejemplificar, consideremos una parábola abierta hacia abajo que se intersecta con el eje X en A y B. Para agotar el área del segmento parabólico, Arquímedes procedió más o menos de la siguiente manera: trazó un triángulo APB con vértice P en el punto medio del arco de la parábola y los vértices A y B como puntos de intersección de la parábola con el eje X. Posteriormente, al área del segmento parabólico, le restó el área del triángulo APB, quedando, solamente dentro de la parábola, dos segmentos parabólicos menores (dos cuerdas AP y BP). Tomando como base estas cuerdas, construyó dos triángulos nuevos ARP y PQB, con R y Q como puntos medios, respectivamente, de los dos arcos restantes. Arquímedes demostró que el área de cada uno de estos triángulos era igual a una octava parte del triángulo APB. Siguiendo el mismo proceso, volvió a restarle al área del segmento parabólico inicial, las áreas de los triángulos ARP y PQB, quedando ahora cuatro cuerdas: AR, RP, PQ y QB, con los que formó cuatro triángulos y, de la misma manera, demostró que el área de cada uno de estos nuevos triángulos era la octava parte de cada uno de los dos triángulos anteriores. Así continuó ad infinitum y estimó el área total de los triángulos inscritos como cuatro terceras partes del triángulo inicial APB. Como ya se puede observar, estimado lector, al sumar las áreas de todos los triángulos construidos en el interior de la parábola, resulta que dicha suma casi coincide con el área del segmento parabólico. Nuevamente, por reducción al absurdo, Arquímedes demostró que las áreas coincidían y, por tanto, se comprobó que el área del segmento parabólico es igual a cuatro terceras partes del triángulo APB.

Los métodos proporcionados por Eudoxo y Arquímedes, hace más de dos mil años, son usados hoy para calcular áreas con cualquier tipo de curvas y volúmenes y con cualquier tipo de superficies. Ambos métodos fueron retomados posteriormente por el alemán Johannes Kepler para resolver problemas de sólidos de revolución, y por el italiano Bonaventura Cavalieri para crear su principio conocido como principio de Cavalieri. Hoy, los métodos exhaustivo y de reducción al absurdo son los pilares sobre los que se edifica toda la estructura matemática del cálculo infinitesimal.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

El usuario otorga permisos amplios para usar su imagen, lo que facilita la creación de contenido Deepfake, capaz de imitar su apariencia y voz con gran precisión.

A bordo del cohete Centaur, de la empresa United Launch Alliance (ULA), viajan cinco robots diseñados por la UNAM, mismos que podrán desplazarse de manera autónoma por el suelo de la luna.

Hasta el momento han captado la constelación de Orión, imagen que incluye cerca de 200 mil fotos individuales.

Por muy abstracto que se vuelva el razonamiento matemático procede de la realidad material y tarde o temprano vuelve a ella.

El mal manejo, la extracción ilegal y la mala información, así como los mitos y el desarrollo turístico, han llevado a pérdidas importantes en el número de poblaciones de la cacerolita de mar.

La Nochebuena era una flor predilecta para los aztecas, zapotecas, zoques, chontales y totonacas.

Los especialistas indican que en todo el país se detectan alrededor de 195 mil casos de cáncer al año, los cuales tienen una tasa de mortalidad del 46%.

La temporada comenzará el 1 de junio y terminará el 30 de noviembre.

Los genes son los responsables de la conformación del genotipo

La intención es lograr un lente de material blando que logre un acercamiento, en un primer prototipo, de 32 por ciento con respecto a la visualización normal.

El grupo, compuesto por 34 estudiantes de las carreras de Autotrónica, Mecatrónica y Electrónica Industrial, visitan la NASA.

Las guerras biológicas permiten combatir a los enemigos sin confrontarse físicamente y han sido practicadas a lo largo de la historia. Los primeros usos de agentes biológicos se remontan a tres mil 500 años.

Este telescopio espacial fue lanzado el sábado mediante el cohete Ariane 5 y es un proyecto liderado por la NASA.

Cuando se habla de entrenamiento deportivo y su dosificación en los atletas, entran en juego diversas variantes que influirán en resultados ya sea positivos o negativos.

La idea de aprender sin esfuerzo hace que el conocimiento adquirido en los menores sea volátil, superficial, en desmedro de su capacidad intelectual; y preocupa que cada año el nivel académico e intelectual de niños y jóvenes está decayendo a sitios alarmantes.