Cargando, por favor espere...

La geometría de los fractales y sus implicaciones
La naturaleza es compleja y se manifiesta de muchas formas. Uno de los instrumentos para estudiar dichas formas es la geometría
Cargando...

La naturaleza es compleja y se manifiesta de muchas formas. Uno de los instrumentos para estudiar dichas formas es la geometría, gracias a la que el ser humano se ha acercado mucho para comprenderlas mejor.

Nikolái Lobachevski, el gran geómetra ruso, defendía la premisa de que la geometría es en esencia movimiento, que se aprecia en el crecimiento de una planta, la distribución de los pétalos de las flores, la trayectoria de vuelo de un ave, el recorrido de un jabalí, etc. La ciencia actual ha dividido el estudio de estos movimientos en tres grandes campos de la matemática: la geometría euclidiana (plana), la lobachevskiana (hiperbólica) y la riemanniana (elíptica).

Sin embargo, estas ramas de la matemática no han podido describir de forma completa la diversidad de objetos y movimientos en la naturaleza. En tal caso se hallan las formas de la orilla de las hojas del helecho, del brócoli, las líneas costeras, las nubes, las montañas y muchos otros objetos que son complicados de describir con las geometrías existentes. Este problema hizo posible el surgimiento de un instrumento de esta ciencia conocida hoy como la geometría de los fractales, que se encarga de estudiar fenómenos y objetos fragmentados o fracturados que se repiten a escala mayor o menor, manteniendo una copia, casi exacta, de su estructura original.

Las irregularidades y patrones fragmentados presentes en la naturaleza fueron estudiados por primera vez por el matemático francés Henri Poincaré (1854-1912), cuando se encontró con los sistemas dinámicos. Posteriormente, el sueco Helge von Koch (1870-1924), en su artículo Acerca de una curva continua que no posee tangentes y que se obtiene por medio de los métodos de la geometría elemental, dio a conocer su resultado sobre el llamado “copo de nieve de Koch” o “estrella de Koch”, una curva infinita, continua y cerrada que encierra una superficie finita. La construcción se hace dividiendo cada lado de un triángulo equilátero en tres segmentos iguales, y sobre cada segmento central se construye otro triángulo equilátero (obteniendo al final una figura parecida a una estrella de David); y así sucesivamente hasta aproximarse a una figura similar a un copo de nieve.

El matemático polaco Waclaw Sierpínski (1882-1969) también trabajó en el tema de los fractales y es conocido por el triángulo que lleva su nombre, que consiste en dividir un triángulo en tres triángulos congruentes (iguales). Cada uno de esos triángulos, a su vez, se divide en otros tres triángulos congruentes, y así sucesivamente.

El francés Gaston Julia (1893-1978) fue otro de los matemáticos que hizo también contribuciones a la teoría de los fractales: generalizó esta teoría al plano complejo y en éste construyó su conjunto, conocido como “Conjunto de Julia”, que se obtiene a partir de cualquier función compleja. La longitud de la figura formada por dicha función es infinita. Este resultado puede encontrarse en su trabajo Informe sobre la iteración de las funciones racionales, publicado en la revista francesa de matemáticas Journal de Mathématiques Pures et Appliquées.

Otro científico que incursionó en el tema fue el matemático y meteorólogo estadounidense Edward Lorenz (1917-2008), con las Órbitas caóticas o atractor caótico de Lorenz, acuñado en 1963, que no se trata más que de un sistema dinámico determinístico tridimensional no lineal presente en la atmósfera terrestre.

Sin embargo, fue el polaco Benoit Mandelbrot (1924-2010), quien sistematizó por primera vez la geometría de los fractales. Continuó con el estudio de las propiedades de los fractales de Gaston Julia y, en 1980, obtuvo la imagen de un fractal en una computadora, que puede ser ampliado muchas veces y en cada reproducción sucesiva repetir el patrón del fractal. Fue así como nació el Conjunto de Mandelbrot, que se graficó en un plano complejo.

El avance en la teoría de los fractales contribuyó de manera significativa al análisis de las propiedades mecánicas, físicas y químicas de las superficies fracturadas de los materiales como polipropileno semicristalino y poliestireno amorfo, entre otros, que ahora se estudian en la ingeniería de materiales.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

Las muertes por sobredosis de fentanilo alcanzaron otro récord en EE. UU. En sólo un año (2021-2022) casi 109 mil personas perdieron la vida por consumir esta sustancia.

Arquímedes se había adelantado a los matemáticos de mediados y último tercio del Siglo XVII como Cavalieri, Pascal, Newton y Bernoulli.

La bacteria P. luminiscens actuó sobre las heridas de los soldados como un como un antibiótico muy eficaz, lo que explica por qué las heridas fluorescentes sanaban más rápido que las heridas sin la bacteria fluorescente. Seguramente, esta bacteria salvó la vida de varios soldados, ¿cómo pasó?

Otra de las ventajas del cultivo in vitro es que le permite al hombre controlar la humedad, la temperatura y la luz, factores decisivos para el crecimiento de una planta, que, de manera natural, no pueden ser controlados.

En este Gobierno, los científicos se han sentido agredidos por el Conacyt, que ha denigrado su trabajo. Aun así advirtieron de los peligros y deficiencias de esta nueva Ley, pero al final no fueron escuchados.

Son uno de los pocos grupos totalmente originarios que aún existen en el mundo entero; persisten alrededor de seis mil 200 individuos. En las últimas décadas han enfrentado distintos episodios de despojo de sus bosques.

Hipatia era tan famosa que se convirtió en consejera de políticos, eclesiásticos y aristócratas; sin embargo, esta influencia social y política finalmente causó su trágica muerte.

Dotado de un extraordinario talento para estructurar conexiones, el alemán Alexander Grothendiek amplió las fronteras de la matemática contemporánea.

La influencia que han ejercido las ideas de Platón (Atenas, 429-347 a. C.) en la mente de los matemáticos perdura hasta nuestros días. Matemáticos contemporáneos como G. H. Hardy y Kurt Gödel son declarados platonistas.

Si te has identificado con las personas que aman el terror, te contaré una historia de hechos reales que te pondrá los pelos de punta. Ésta es una historia sobre seres vivos que vuelven zombis a sus víctimas.

 El resto de glaciares mexicanos desaparecerán en las próximas décadas si no se toma acciones para frenarlo, aseguraron los especialistas.

El Centro Nacional de Investigaciones Científicas (CNRS) francés sostuvo que en plena selva amazónica descubrió una “extensa red de ciudades de dos mil 500 años de antigüedad”.

El empresario advirtió la existencia de un gran peligro de que las redes sociales se dividan entre extrema derecha y extrema izquierda, lo que generaría "más odio y división en nuestra sociedad".

El tren estará atravesando el segundo pulmón forestal de América Latina: la selva maya. Fragmenta el hábitat y además viola los derechos de todas las comunidades indígenas que viven en la zona, entre otras graves consecuencias.

Desde el punto de vista filosófico, D’Álembert era partidario de la unidad del saber, proponía el progreso de la humanidad a través del desarrollo de la ciencia, unificadas por una filosofía desprendida de los mitos y creencias transcendentales.