Cargando, por favor espere...
La naturaleza es compleja y se manifiesta de muchas formas. Uno de los instrumentos para estudiar dichas formas es la geometría, gracias a la que el ser humano se ha acercado mucho para comprenderlas mejor.
Nikolái Lobachevski, el gran geómetra ruso, defendía la premisa de que la geometría es en esencia movimiento, que se aprecia en el crecimiento de una planta, la distribución de los pétalos de las flores, la trayectoria de vuelo de un ave, el recorrido de un jabalí, etc. La ciencia actual ha dividido el estudio de estos movimientos en tres grandes campos de la matemática: la geometría euclidiana (plana), la lobachevskiana (hiperbólica) y la riemanniana (elíptica).
Sin embargo, estas ramas de la matemática no han podido describir de forma completa la diversidad de objetos y movimientos en la naturaleza. En tal caso se hallan las formas de la orilla de las hojas del helecho, del brócoli, las líneas costeras, las nubes, las montañas y muchos otros objetos que son complicados de describir con las geometrías existentes. Este problema hizo posible el surgimiento de un instrumento de esta ciencia conocida hoy como la geometría de los fractales, que se encarga de estudiar fenómenos y objetos fragmentados o fracturados que se repiten a escala mayor o menor, manteniendo una copia, casi exacta, de su estructura original.
Las irregularidades y patrones fragmentados presentes en la naturaleza fueron estudiados por primera vez por el matemático francés Henri Poincaré (1854-1912), cuando se encontró con los sistemas dinámicos. Posteriormente, el sueco Helge von Koch (1870-1924), en su artículo Acerca de una curva continua que no posee tangentes y que se obtiene por medio de los métodos de la geometría elemental, dio a conocer su resultado sobre el llamado “copo de nieve de Koch” o “estrella de Koch”, una curva infinita, continua y cerrada que encierra una superficie finita. La construcción se hace dividiendo cada lado de un triángulo equilátero en tres segmentos iguales, y sobre cada segmento central se construye otro triángulo equilátero (obteniendo al final una figura parecida a una estrella de David); y así sucesivamente hasta aproximarse a una figura similar a un copo de nieve.
El matemático polaco Waclaw Sierpínski (1882-1969) también trabajó en el tema de los fractales y es conocido por el triángulo que lleva su nombre, que consiste en dividir un triángulo en tres triángulos congruentes (iguales). Cada uno de esos triángulos, a su vez, se divide en otros tres triángulos congruentes, y así sucesivamente.
El francés Gaston Julia (1893-1978) fue otro de los matemáticos que hizo también contribuciones a la teoría de los fractales: generalizó esta teoría al plano complejo y en éste construyó su conjunto, conocido como “Conjunto de Julia”, que se obtiene a partir de cualquier función compleja. La longitud de la figura formada por dicha función es infinita. Este resultado puede encontrarse en su trabajo Informe sobre la iteración de las funciones racionales, publicado en la revista francesa de matemáticas Journal de Mathématiques Pures et Appliquées.
Otro científico que incursionó en el tema fue el matemático y meteorólogo estadounidense Edward Lorenz (1917-2008), con las Órbitas caóticas o atractor caótico de Lorenz, acuñado en 1963, que no se trata más que de un sistema dinámico determinístico tridimensional no lineal presente en la atmósfera terrestre.
Sin embargo, fue el polaco Benoit Mandelbrot (1924-2010), quien sistematizó por primera vez la geometría de los fractales. Continuó con el estudio de las propiedades de los fractales de Gaston Julia y, en 1980, obtuvo la imagen de un fractal en una computadora, que puede ser ampliado muchas veces y en cada reproducción sucesiva repetir el patrón del fractal. Fue así como nació el Conjunto de Mandelbrot, que se graficó en un plano complejo.
El avance en la teoría de los fractales contribuyó de manera significativa al análisis de las propiedades mecánicas, físicas y químicas de las superficies fracturadas de los materiales como polipropileno semicristalino y poliestireno amorfo, entre otros, que ahora se estudian en la ingeniería de materiales.
Si la incidencia de plagas y enfermedades no acaba con los bosques, sí reduce significativamente su actividad fotosintética. En los tiempos que corren esto contribuye al calentamiento global.
El oportunista luce como un “matasanos”, un doctor de ocasión que, viendo al paciente lamentarse por el dolor que le aqueja en una pierna, decide cortársela. Solo tenía un golpe, pero nadie podrá decirle al doctor que no logró curar el dolor.
"Bard" tienen como propósito contribuir con la creatividad de los internautas, al tiempo en que les facilita la ejecución de diversas tareas.
Si el país tuviera los medios para aprovechar sustentablemente su vegetación, podría cosechar el equivalente a 56 mil 126 millones de pesos.
Con todos los avances y beneficios que la IA ha aportado a la ciencia, también surgen desafíos y preocupaciones; ahora hay preguntas sobre el papel del científico en este nuevo panorama.
La MIA-F1 reconoce afectaciones de gran magnitud a los ecosistemas de los primeros tres tramos.
Investigadores analizaron 5 mil 853 alimentos y los clasificaron por su carga de enfermedades nutricionales. Tales alimentos van desde los 74 minutos de vida perdidos hasta 80 minutos ganados por ración.
Un grupo de científicos reveló que el papiro narra la “vivificación de los gorriones”.
Investigadores del Instituto Tecnológico de Massachusetts demostraron la existencia de una "red lingüística universal" en hablantes de 45 lenguas, un hallazgo que podría revelar los procesos cognitivos base de todo el lenguaje hablado.
El récord del año más cálido pasó de 0.17 grados centígrados en 2016 a 14.98 grados centígrados en 2023.
Se trata de "una zona que está cubierta con nieve 10 meses al año, de difícil acceso por la altura y geografía que ostenta una tupida vegetación y bosque valdiviano".
Pocas son las mujeres que han obtenido frutos tan importantes en las matemáticas a la par de muchos hombres. Es el caso de Ada Lovelace, a ella se reconoce como la pionera de la programación de la máquina analítica.
Investigadores, indican que hace dos millones de años los primeros humanos tenían la capacidad y la tecnología necesarias para explotar de forma continua una variedad de hábitats cambiantes.
¿Por qué algunas personas pueden comprender más fácil el formalismo matemático? ¿Por qué les fluyen ideas matemáticas con mayor facilidad que a otras? Esta increíble mente perteneció a uno de los más enigmáticos en la Historia de la Matemática.
Apolonio de Perga, llamado "El Gran Geómetra", es uno de los tres grandes matemáticos de la antigüedad, mérito que comparte con Euclides y Arquímedes.
Los mexicanos debemos estar alerta ante intentos imperialistas de Trump: Antorcha
Trabajadoras de Conavim en "limbo" laboral tras extinción de la dependencia
¡Atención! Transportistas anuncian cierres en Edomex y CDMX
Inician preinscripciones en escuelas públicas de la CDMX 2025
Aguacate mexicano brillará en Super Bowl, exportarán 110 mil toneladas
Diputados buscan aprobar más de 40 reformas a partir de febrero
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.