Cargando, por favor espere...
Immanuel Kant (1724-1804) considerado precursor del idealismo y uno de los filósofos más influyentes de la filosofía universal en su obra Crítica de la razón pura, considera: “sea cual fuera el modo como un conocimiento se relacione con los objetos, aquel en que la relación es inmediata y para el que todo pensamiento sirve de medio se llama intuición”. La intuición es esencial para todo conocimiento, en particular para el conocimiento matemático.
Para Kant existen dos formas de conocimiento, uno llamado A priori, independiente de la experiencia, y otro conocimiento llamado A posteriori, que sí depende de la experiencia.
Immanuel Kant establece que la intuición tiene dos vertientes; una empírica –la parte A posteriori– en la que se reconocen los colores, sonidos, olores etc., y otra es la parte pura –A priori–, independiente de la experiencia, que nos permite percibir el espacio y el tiempo como entes independientes. Con la concepción de espacio somos capaces de representar las cosas que se hallan fuera de nosotros mismos y con el tiempo, mediante la mente que se observa a sí misma.
Para Immanuel Kant, la matemática es producto de la intuición no sobre el pensamiento, mediante esta intuición A posteriori percibimos la geometría y las propiedades de las figuras; la aritmética es percibida por nuestra intuición del espacio y tiempo y son estructuras A priori separadas, que nos permiten interpretar los fenómenos físicos.
Estas ideas de Immanuel Kant fueron muy influyentes, puesto que justificaban, aparentemente, la geometría euclidiana –la única que se conocía en la época de Kant– como un conocimiento A priori (independiente de la experiencia); de otro lado, la física newtoniana, que se basa en esta geometría, considera que todo fenómeno físico está determinado en un cierto espacio y tiempo (como entes separados). Por supuesto, con el advenimiento de las geometrías no euclidianas y luego con la teoría de la relatividad, estas ideas de Immanuel Kant han sido severamente cuestionadas.
En la propia matemática se han suscitado hechos que ponen en cuestionamiento el papel de la intuición; crear conocimiento matemático haciendo uso de la intuición, sin una demostración fehaciente, es actualmente algo impensable. Por ejemplo: aunque la afirmación “todo polígono cerrado que no se cruza a sí mismo divide el plano en dos partes separadas” sea intuitivamente evidente, hoy no es suficiente para aceptarla como conocimiento matemático; es necesaria una demostración formal. La misma experiencia física, incluso, puede contener errores o inexactitudes en el espacio y el tiempo; por ejemplo, cuando observamos que un disco que ocupa un espacio determinado –según nuestra intuición–. Mediante la observación o experiencia física no hay forma certera de saber si la longitud del disco es un número racional o irracional. Aunque afinemos nuestras técnicas de medición, la incerteza siempre estará presente. El problema radica que se intenta hacer isovalente la medida (longitud) de un objeto material con una ficción humana, que son los números.
Las ideas Kantianas empiezan a ser cuestionadas; uno de sus críticos más importantes fue Bertrand Russell, quien intentó demostrar que la aritmética se reducía a la lógica y que, por lo tanto, no era parte de la intuición A priori del tiempo, como manifestaba Immanuel Kant.
Los principales argumentos para demostrar que la intuición no es de fiar en matemática se fueron dando desde la segunda mitad del Siglo XIX; algunos ejemplos al respecto son los siguientes:
Intuitivamente es imposible imaginar un punto que se mueva y que en cada punto no tenga una velocidad definida. Este hecho fue desmentido, primero, por Bernhard Bolzano, filósofo, teólogo y matemático austriaco; después, en 1861, el alemán Karl Weierstrass, encontró un ejemplo en el que una curva no tiene por qué tener una tangente en cada punto. Este hecho matemático se demuestra en los actuales cursos de cálculo de una variable.
Con este resultado matemático se inició una revisión profunda de los fundamentos del cálculo. Los pioneros en este programa fueron Agustín Cauchy (1789-1857), Bernhard Bolzano (1781-1848), Karl Weierstrass (1815 – 1897), George Cantor (1845 – 1818) y Richard Dedekind (1831-1916).
Las guerras biológicas permiten combatir a los enemigos sin confrontarse físicamente y han sido practicadas a lo largo de la historia. Los primeros usos de agentes biológicos se remontan a tres mil 500 años.
Los humanos, a diferencia de los animales, son enseñados en familias, escuelas y grupos humanos insertos en sociedades cambiantes en términos estructurales e ideológicos.
La relación entre la ciencia y el dinero, entre la técnica y el negocio, ha sido ampliamente discutida por los grandes pensadores de la humanidad.
La pobreza y la marginación social son la principal causa del incremento de enfermedades relacionadas con la nutrición.
A pesar de ser matemático, nunca estuvo interesado en los temas de moda de la época (física-matemática), tampoco en la geometría. Fue, por varias razones, único en la historia de la matemática.
El oportunista luce como un “matasanos”, un doctor de ocasión que, viendo al paciente lamentarse por el dolor que le aqueja en una pierna, decide cortársela. Solo tenía un golpe, pero nadie podrá decirle al doctor que no logró curar el dolor.
La Federación Internacional de Robótica proyecta que seguirá creciendo la demanda de robots industriales con la instalación de 600 mil robots nuevos en todo el mundo para el año 2024.
Para que el deportista cumpla sus objetivos físicos debe considerar varias variables. Aquí explicamos la hipertrofia muscular, puesto que la población que realiza deporte casi siempre busca una buena imagen física.
El tránsito hacia una matemática filosófica exige iniciar una quinta revolución matemática; para ello, el estudio de la historia desde el hacer de un matemático es fundamental.
“Prohibir el fentanilo en la práctica es quitarle a los enfermos el derecho a vivir sin dolor, es retroceder varios años en la historia”, sostuvieron médicos y científicos ante la propuesta de AMLO de prohibir el fentanilo en la medicina.
Dotado de un extraordinario talento para estructurar conexiones, el alemán Alexander Grothendiek amplió las fronteras de la matemática contemporánea.
El dilema de las redes sociales aborda el hecho de cómo el producto que las compañías “procesan” para lograr la obtención de fabulosas ganancias somos los mismos seres humanos.
Los hallazgos sugieren un movimiento continuo hacia el oeste a lo largo de millones de años, lo que ha llevado a un refinamiento de la teoría de la tectónica de placas.
Quizá la principal causa de la escasa participación de las mujeres en la ciencia sean los estereotipos de género que imperan en la sociedad y que dictan que las mujeres no cuentan con la capacidad o el derecho para hacer investigación.
Groenlandia es un país autónomo que, paradójicamente, pertenece al reino de Dinamarca y controla su política exterior y monetaria.
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador