Cargando, por favor espere...

Los objetos matemáticos y la realidad
Hablar de la existencia de la realidad ha sido un problema filosófico muy discutido. En este contexto, qué tipo de realidad es un objeto matemático, es una pregunta que abordaremos en este artículo.
Cargando...

Cuando nos referimos a la realidad, deberíamos definir lo que entendemos por la existencia de un objeto o ente como decían los griegos. Hablar de la existencia de la realidad es un problema filosófico ampliamente discutido a través de la historia. Dentro de este contexto, qué tipo de realidad es un objeto matemático, es una pregunta que abordaremos en este artículo.

Muchos creen que los objetos matemáticos se encuentran fuera del ser humano, argumentando que, si no existiera el ser humano, igual existiría el sol y la luna como objetos redondos, y ahí estaría el objeto matemático círculo o esfera (de acuerdo a la perspectiva). Estas personas están convencidas que al mirar un objeto materializable (por entrar en contacto con los sentidos) de forma esférica o cúbica, este es un objeto matemático. Por lo tanto, cuando toman conocimiento de resultados matemáticos contraintuitivos, por ejemplo, la paradoja de Banach-Tarski (en donde una esfera es posible reconstruirla para formar dos esferas del mismo tamaño), no lo pueden explicar o entender. Esto se debe a que confunden objetos materializables con los objetos matemáticos.

Hay varias formas de concebir la realidad, una de ellas es a través de nuestros sentidos, otra es a través del efecto o interacción con nosotros, por ejemplo, la fuerza de gravedad, las ondas electromagnéticas etc., aunque no podemos percibirlo por nuestros sentidos, igual sabemos que existen por los efectos que ellos manifiestan. Sin embargo, existe otro tipo de realidad, que no es percibido por nuestros sentidos, y no interactúan con nosotros, por ejemplo, los objetos matemáticos; un triángulo es un constructo mental, una invención que no se percibe por nuestros sentidos, ni actúa con nosotros, solo existe de manera conceptual en la mente humana. Para efectos de comunicar esta idea, creamos pictogramas que se semejen al triángulo, pero como objeto material no existe. Estos pictogramas, son útiles en la enseñanza, y hasta como elementos heurísticos para descubrir sus propiedades, para ello hay que someterlo a algún sistema formal (otra invención).

Un constructo mental, para llamarlo objeto matemático tiene que tener asociado un sistema formal y además un cerebro que lo interprete conceptualmente, de lo contrario solo sería un dibujo. Por lo tanto, sin seres humanos (matemáticos), la luna y el sol, aunque tengan la forma redonda, solo serán objetos materiales cuyas formas tendrán valor artístico, pero no constituyen un objeto matemático.

La realidad matemática va más allá de la realidad material, es por ello que transmitir matemática es complejo, es necesario entrenamiento y formación. Para transmitirlo, debemos situarnos en un contexto y tener en cuenta su propósito, por ejemplo, en educación, la transmisión tiene un propósito de formar un ciudadano, por ello que debemos auxiliarnos de elementos heurísticos (gráficos, material concreto, símbolos adecuados, etc.) pero estos materiales solo dan la idea aproximada de los objetos matemáticos.

Daré un ejemplo que nos grafica la complejidad de transmitir los conocimientos matemáticos: Cómo hacemos entender la existencia de la √2. El método pedagógico es asociarlo con la recta real, sin embargo, ningún humano es capaz de ubicar exactamente al punto de la recta que corresponde a la √2. Aunque nos acerquemos hasta los átomos del dibujo de la recta, lleguemos a las partículas sub atómicas (sabemos hoy día que existe entre ellas un espacio vacío) no podemos encontrar exactamente el punto que sea asociado a la  √2. Por lo tanto, ¿cómo sabemos que existe? Lo que pasa es que confundimos como isovalente al objeto material, recta dibujada en el papel, con el objeto matemático conjunto de números reales, que solo existe en la mente humana, como una ficción. Por consiguiente, un punto es asociado con √2 como ficción es decir como constructo mental. No es posible asociarlo de manera material con los puntos de la recta (dibujo), sin embargo, lo enseñamos así, como recurso didáctico, nos valemos de la intuición humana, que como ya hemos afirmado (anterior artículo) en matemática no es garantía de una verdad. En matemática se demuestra fehacientemente que √2 existe, pero no es posible materializarlo. Es complejo enseñar matemática, no es fácil y lúdico como nos hacen creer, pero se puede facilitar el entendimiento, teniendo claro el propósito de su enseñanza.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

Arquímedes se había adelantado a los matemáticos de mediados y último tercio del Siglo XVII como Cavalieri, Pascal, Newton y Bernoulli.

Dado que los nutrientes de una selva están inmovilizados en la densa vegetación, el suelo es poco fértil y no es adecuado para desarrollar actividades agropecuarias. Al talar los árboles, los nutrientes se van en los troncos y no retornan al suelo.

Este libro compila los estudios que 11 psicólogos, sociólogos y antropólogos dedicaron al fenómeno de la comunicación de masas en Estados Unidos.

Ayer, el Telescopio Espacial James Webb reveló la imagen más clara hasta la fecha del universo primitivo, que se remonta a 13 mil millones de años, dijo la NASA el lunes.

Científicos de la Universitat Pompeu Fabra de Barcelona descubrieron cómo frenar la producción de acné, al alterar de manera exitosa el genoma del 'Cutibacterium acnes', una bacteria cutánea relacionada con la aparición de la afección cutánea.

“Aproximadamente el 70 por ciento de los cinco mil 200 millones de hectáreas de tierras secas que se utilizan en agricultura o ganadería está degradada y amenazada por la desertificación”.

Fueron 5,504 especies previamente desconocidas de virus las que se identificaron, entre ellas, al 'Taraviricota', que podría ser el eslabón perdido en la evolución de los virus ARN.

Los métodos proporcionados por Eudoxo y Arquímedes, hace más de dos mil años, son usados hoy para calcular áreas con cualquier tipo de curvas y volúmenes.

Entre marxistas es frecuente afirmar que lo más importante de Marx no fue lo que dijo, sino su método de conocimiento. Esto es así porque, así como el universo es infinito, también lo es su conocimiento.

Uno de los grandes matemáticos con espíritu de poeta fue el inglés James Joseph Sylvester, quien fue dotado de una extraordinaria intuición matemática y de una gran sensibilidad poética, ya que logró conectar las ideas matemáticas con la poesía.

Científicos confirman que fragmento de roca recuperado hace 11 años es el material más caliente jamás encontrado en la Tierra.

Investigadores del Instituto Tecnológico de Massachusetts demostraron la existencia de una "red lingüística universal" en hablantes de 45 lenguas, un hallazgo que podría revelar los procesos cognitivos base de todo el lenguaje hablado.

¿Realmente son nocivas para el ecosistema? Un ambientalista dirá: “sí, porque desplazan especies nativas”. Sin embargo, ciertas necesidades se satisfacen mejor con especies exóticas que con nativas, por lo que es necesario asumir riesgos.

El esfuerzo debe concentrarse en una capacitación intensa a los profesores, para que ellos a su vez repliquen esta enseñanza en sus alumnos, de modo que en el futuro  muchos estudiantes pertenecientes a la clase pobre dispongan de las herramientas adecua

Sirva de ejemplo la vida de Bonaventura Francesco Cavalieri para que los jóvenes mexicanos decidan estudiar matemáticas y comprendan que es útil en la resolución de problemas reales.