Cargando, por favor espere...
Cuando nos referimos a la realidad, deberíamos definir lo que entendemos por la existencia de un objeto o ente como decían los griegos. Hablar de la existencia de la realidad es un problema filosófico ampliamente discutido a través de la historia. Dentro de este contexto, qué tipo de realidad es un objeto matemático, es una pregunta que abordaremos en este artículo.
Muchos creen que los objetos matemáticos se encuentran fuera del ser humano, argumentando que, si no existiera el ser humano, igual existiría el sol y la luna como objetos redondos, y ahí estaría el objeto matemático círculo o esfera (de acuerdo a la perspectiva). Estas personas están convencidas que al mirar un objeto materializable (por entrar en contacto con los sentidos) de forma esférica o cúbica, este es un objeto matemático. Por lo tanto, cuando toman conocimiento de resultados matemáticos contraintuitivos, por ejemplo, la paradoja de Banach-Tarski (en donde una esfera es posible reconstruirla para formar dos esferas del mismo tamaño), no lo pueden explicar o entender. Esto se debe a que confunden objetos materializables con los objetos matemáticos.
Hay varias formas de concebir la realidad, una de ellas es a través de nuestros sentidos, otra es a través del efecto o interacción con nosotros, por ejemplo, la fuerza de gravedad, las ondas electromagnéticas etc., aunque no podemos percibirlo por nuestros sentidos, igual sabemos que existen por los efectos que ellos manifiestan. Sin embargo, existe otro tipo de realidad, que no es percibido por nuestros sentidos, y no interactúan con nosotros, por ejemplo, los objetos matemáticos; un triángulo es un constructo mental, una invención que no se percibe por nuestros sentidos, ni actúa con nosotros, solo existe de manera conceptual en la mente humana. Para efectos de comunicar esta idea, creamos pictogramas que se semejen al triángulo, pero como objeto material no existe. Estos pictogramas, son útiles en la enseñanza, y hasta como elementos heurísticos para descubrir sus propiedades, para ello hay que someterlo a algún sistema formal (otra invención).
Un constructo mental, para llamarlo objeto matemático tiene que tener asociado un sistema formal y además un cerebro que lo interprete conceptualmente, de lo contrario solo sería un dibujo. Por lo tanto, sin seres humanos (matemáticos), la luna y el sol, aunque tengan la forma redonda, solo serán objetos materiales cuyas formas tendrán valor artístico, pero no constituyen un objeto matemático.
La realidad matemática va más allá de la realidad material, es por ello que transmitir matemática es complejo, es necesario entrenamiento y formación. Para transmitirlo, debemos situarnos en un contexto y tener en cuenta su propósito, por ejemplo, en educación, la transmisión tiene un propósito de formar un ciudadano, por ello que debemos auxiliarnos de elementos heurísticos (gráficos, material concreto, símbolos adecuados, etc.) pero estos materiales solo dan la idea aproximada de los objetos matemáticos.
Daré un ejemplo que nos grafica la complejidad de transmitir los conocimientos matemáticos: Cómo hacemos entender la existencia de la √2. El método pedagógico es asociarlo con la recta real, sin embargo, ningún humano es capaz de ubicar exactamente al punto de la recta que corresponde a la √2. Aunque nos acerquemos hasta los átomos del dibujo de la recta, lleguemos a las partículas sub atómicas (sabemos hoy día que existe entre ellas un espacio vacío) no podemos encontrar exactamente el punto que sea asociado a la √2. Por lo tanto, ¿cómo sabemos que existe? Lo que pasa es que confundimos como isovalente al objeto material, recta dibujada en el papel, con el objeto matemático conjunto de números reales, que solo existe en la mente humana, como una ficción. Por consiguiente, un punto es asociado con √2 como ficción es decir como constructo mental. No es posible asociarlo de manera material con los puntos de la recta (dibujo), sin embargo, lo enseñamos así, como recurso didáctico, nos valemos de la intuición humana, que como ya hemos afirmado (anterior artículo) en matemática no es garantía de una verdad. En matemática se demuestra fehacientemente que √2 existe, pero no es posible materializarlo. Es complejo enseñar matemática, no es fácil y lúdico como nos hacen creer, pero se puede facilitar el entendimiento, teniendo claro el propósito de su enseñanza.
El empresario advirtió la existencia de un gran peligro de que las redes sociales se dividan entre extrema derecha y extrema izquierda, lo que generaría "más odio y división en nuestra sociedad".
No dormir provoca que el cerebro elimine una cantidad significativa de neuronas, así como una perdida significativa de conexiones sinápticas; lo peor, la recuperación del sueño sería incapaz de revertir el daño.
El androcentrismo es la palabra empleada para hacer referencia a la masculinización de lo cotidiano en las prácticas sociales, culturales y en el ámbito científico.
Las cícadas son plantas únicas, sobrevivientes de casi 280 millones de años, compartieron espacio y tiempo con los dinosaurios y se consideran fósiles vivientes.
La vida de Mendel es un ejemplo clásico de perseverancia. Aunque al principio sus observaciones no tuvieron relevancia para la comunidad científica, biólogos y botánicos llegaron a sus mismas conclusiones décadas después de su muerte.
La potencia del telescopio Hubble logró captar imágenes de la galaxia conocida como UGC 8091 que, según la NASA y la ESA, es parecida a una “bola de nieve” cósmica.
Svante Pääbo logró secuenciar el ADN de los neandertales, la especie de homínido más emparentada con los seres humanos actuales, y que se extinguió hace 30 mil años.
El esfuerzo debe concentrarse en una capacitación intensa a los profesores, para que ellos a su vez repliquen esta enseñanza en sus alumnos, de modo que en el futuro muchos estudiantes pertenecientes a la clase pobre dispongan de las herramientas adecua
El pasado tres de febrero, otro golpe brutal a la naturaleza tuvo lugar en Ohio, cuando un tren con sustancias peligrosas se descarriló y liberó gases venenosos; 14 de sus 150 vagones contenían 100 mil litros de cloruro de vinilo.
Para la antigua cultura griega, los números naturales podían tener dos realizaciones, una como elemento de medición (lo llamaban magnitud) y otra como elemento de conteo.
La filosofía no es un adorno, merece que se le reconozca su capacidad de estudio de la realidad, su utilidad en el más amplio sentido de la palabra, pues la humanidad la necesita para manifestarse como tal. Olvidar a la filosofía es condenarnos a las sombras...
Los mitos antiguos se basan en observaciones bastante atinadas hechas por los pueblos primitivos.
La situación que enfrentan los tabasqueños es complicada y de alto riesgo. Urge implementar programas de desinfección.
¿Por qué algunas personas pueden comprender más fácil el formalismo matemático? ¿Por qué les fluyen ideas matemáticas con mayor facilidad que a otras? Esta increíble mente perteneció a uno de los más enigmáticos en la Historia de la Matemática.
¡La carrera comienza! La marca cuyos autos alcanzan los 340 kilómetros por hora está en riesgo. Esto en el reciente estreno de la película Ferrari, de Michael Mann.
Oaxaca de Juárez, dos años sin relleno sanitario
OMS aprueba nueva vacuna de mpox en niños
Rusia lanza misil balístico sin carga nuclear contra Ucrania
Denuncia Coordinadora Territorial del Pueblo de Mixquic acoso y violencia política
Frente Cívico Nacional definirá ruta para nuevo partido político
Aumenta trabajo infantil informal en el Centro Histórico de CDMX
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador