Cargando, por favor espere...

La génesis de la teoría de conjuntos (parte II)
Heine logró demostrar que si una serie trigonométrica converge a una función continua en un intervalo dado, entonces la serie es única.
Cargando...

En 1870, Eduard Heine (1821-1881) buscaba determinar las condiciones para la unicidad de la representación de funciones reales mediante series trigonométricas (Fourier). Heine logró demostrar que si una serie trigonométrica converge a una función continua en un intervalo dado, entonces la serie es única. Sin embargo, no encontró una demostración general para tal hecho, tarea que encomendó al matemático alemán George Cantor (1845–1918), quien logró demostrar en su tesis doctoral que la representación es única si la función a representar sea discontinua o la serie no converja en una cantidad finita de puntos. En 1872, Cantor demostró que la unicidad seguía valiendo para un caso excepcional de una cantidad infinita de puntos; a esta condición excepcional la llamó Conjunto Derivado.

Sea P el conjunto de números del intervalo [a, b], en los que la serie no converge o la función es discontinua (usando el principio de extensión). Si P es infinito, existirán puntos de acumulación (resultado de Karl Weierstrass). Al conjunto de aquellos puntos de acumulación, Cantor lo llamó Conjunto Derivado de P y fue denotado por . En general es un conjunto infinito y podemos aplicar el mismo razonamiento y conseguir P´´, y así sucesivamente, de tal forma que Pn es el conjunto de puntos de acumulación de Pn−1. Si Pn existe n entonces P se llama “conjunto de segunda especie”, o si deja de existir para algún n, en este caso se llamaba “conjunto de primera especie”. Usando procesos inductivos, Cantor muestra que, si P es de primera especie, entonces la serie trigonométrica es única. Esta idea notable resultó esencial, para que los matemáticos de la época empezaran a desarrollar estos métodos conjuntistas en sus investigaciones. Además, Karl Weierstrass estableció la idea de convergencia uniforme, para que esto funcione.

El matemático que desarrolló esta metodología usada por Bernard Riemann y George Cantor fue Richard Dedekind (1831-1916), dándole resultados extraordinarios; podemos decir que sentó las bases modernas de lo que hoy llamamos Álgebra abstracta. En 1871, Dedekind publicó su Teoría de números algebraicos, también llamada Teoría de ideales por Hilbert; también presentó la noción de cuerpo, anillos enteros, módulos e ideales. En sus clases en la Universidad de Göttingen, Richard Dedekind expuso lo que hoy llamamos Teoría de Galois, en su versión moderna. Sin lugar a dudas era un extraordinario algebrista abstracto: estableció las primeras ideas para concebir a los números enteros a partir de las nociones fundamentales de la Teoría de Conjuntos; mediante la noción de Cadena demostró cómo se pueden obtener todas las propiedades aritméticas de los enteros usando los conjuntos de Cantor. Por otro lado, construyó los números reales con base en las llamadas cortaduras en Q, que hoy llevan su nombre. Todo este extraordinario trabajo fue posible gracias a la metodología conjuntista, pese que no era lo habitual dentro de sus contemporáneos, que preferían una metodología más constructivista.

Desde 1878 a 1892, George Cantor llama a la Teoría de Conjuntos como Teoría de Variedades, siguiendo la idea de Bernard Riemann. Probó que R y Rn son equipotentes, es decir, tienen la misma cardinalidad (mismo número de puntos); que los números racionales son numerables y que los números reales, no lo son. El concepto de “cardinalidad” llamó la atención de Cantor e intentó determinar la cardinalidad de R. Unos años después desarrolló los conjuntos bien ordenados y formuló la famosa Hipótesis del Continuo, cuyo enunciado afirma que “no existen conjuntos infinitos cuyo tamaño esté estrictamente comprendido entre el conjunto de los números naturales y del conjunto de los reales”. A los números reales también se le suele llamar “continuo”. En estas investigaciones introdujo la construcción de los números reales a través de sucesiones fundamentales también llamadas Sucesiones de Cauchy.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

El arribo de la mariposa constituye uno de los mayores atractivos turísticos de la entidad, el cual genera empleo y recursos económicos.

Se ha demostrado que aunque no es un alimento completo por sí solo, los productos comestibles a base de maíz aportan grandes beneficios para la salud humana.

El país no conseguirá la salud ecológica y humana con las buenas intenciones de la Semarnat, porque se necesita voluntad política, mayor presupuesto.

El club de los matemáticos está constituido por un conjunto de seres humanos con alta formación matemática y capaces de inventar nuevos teoremas.

La influencia que han ejercido las ideas de Platón (Atenas, 429-347 a. C.) en la mente de los matemáticos perdura hasta nuestros días. Matemáticos contemporáneos como G. H. Hardy y Kurt Gödel son declarados platonistas.

Von Neumann fue considerado como superdotado, ya que desde los seis años ya sabía dividir, hablar griego antiguo, francés, alemán y latín, y a sus ocho años ya dominaba el cálculo diferencial e integral.

El genio soviético fue quien lo hizo, en 1928, y, con éste, nació formalmente la probabilidad como la conocemos en la actualidad.

La pandemia del Covid-19 es la primera advertencia de un cambio ecológico global al que nos acercamos peligrosamente.

En la propuesta del Conacyt que ha circulado entre la comunidad, identificamos tres graves problemas: la confusión entre gobierno y Estado, la centralización de las decisiones y la falta de referencia al financiamiento estable.

Mirar directamente al Sol durante un eclipse puede causar daños irreversibles en la retina, incluso sin sentir dolor; como sucedió en 1991.

Un estudio identificó a cinco pacientes que desarrollaron la enfermedad de Alzheimer “por contagio”, quienes durante su infancia recibieron un tratamiento hormonal de crecimiento a fin de modificar sus estaturas.

Las siete mil 700 millones de personas que hay en la Tierra, aunado al actual modelo de vida consumista y desenfrenado, aceleran las condiciones de cambio climático que estamos enfrentando, como el calor y el frío.

Mientras el trabajo matemático tiene reglas, axiomas, y su libertad está en función de estar gobernado por sistemas formales; en el trabajo filosófico...

En nuestros días, los científicos discuten con gran preocupación el posible aumento, en las futuras generaciones, de enfermedades o males derivados del efecto ambiental catastrófico más grande después de la época de las postguerras.

Esta herramienta prescinde de las cuerdas vocales y restaura el habla ofreciendo esperanza para pacientes con trastornos de la voz.