Cargando, por favor espere...
En 1870, Eduard Heine (1821-1881) buscaba determinar las condiciones para la unicidad de la representación de funciones reales mediante series trigonométricas (Fourier). Heine logró demostrar que si una serie trigonométrica converge a una función continua en un intervalo dado, entonces la serie es única. Sin embargo, no encontró una demostración general para tal hecho, tarea que encomendó al matemático alemán George Cantor (1845–1918), quien logró demostrar en su tesis doctoral que la representación es única si la función a representar sea discontinua o la serie no converja en una cantidad finita de puntos. En 1872, Cantor demostró que la unicidad seguía valiendo para un caso excepcional de una cantidad infinita de puntos; a esta condición excepcional la llamó Conjunto Derivado.
Sea P el conjunto de números del intervalo [a, b], en los que la serie no converge o la función es discontinua (usando el principio de extensión). Si P es infinito, existirán puntos de acumulación (resultado de Karl Weierstrass). Al conjunto de aquellos puntos de acumulación, Cantor lo llamó Conjunto Derivado de P y fue denotado por P´. En general P´ es un conjunto infinito y podemos aplicar el mismo razonamiento y conseguir P´´, y así sucesivamente, de tal forma que Pn es el conjunto de puntos de acumulación de Pn−1. Si Pn existe n entonces P se llama “conjunto de segunda especie”, o si deja de existir para algún n, en este caso se llamaba “conjunto de primera especie”. Usando procesos inductivos, Cantor muestra que, si P es de primera especie, entonces la serie trigonométrica es única. Esta idea notable resultó esencial, para que los matemáticos de la época empezaran a desarrollar estos métodos conjuntistas en sus investigaciones. Además, Karl Weierstrass estableció la idea de convergencia uniforme, para que esto funcione.
El matemático que desarrolló esta metodología usada por Bernard Riemann y George Cantor fue Richard Dedekind (1831-1916), dándole resultados extraordinarios; podemos decir que sentó las bases modernas de lo que hoy llamamos Álgebra abstracta. En 1871, Dedekind publicó su Teoría de números algebraicos, también llamada Teoría de ideales por Hilbert; también presentó la noción de cuerpo, anillos enteros, módulos e ideales. En sus clases en la Universidad de Göttingen, Richard Dedekind expuso lo que hoy llamamos Teoría de Galois, en su versión moderna. Sin lugar a dudas era un extraordinario algebrista abstracto: estableció las primeras ideas para concebir a los números enteros a partir de las nociones fundamentales de la Teoría de Conjuntos; mediante la noción de Cadena demostró cómo se pueden obtener todas las propiedades aritméticas de los enteros usando los conjuntos de Cantor. Por otro lado, construyó los números reales con base en las llamadas cortaduras en Q, que hoy llevan su nombre. Todo este extraordinario trabajo fue posible gracias a la metodología conjuntista, pese que no era lo habitual dentro de sus contemporáneos, que preferían una metodología más constructivista.
Desde 1878 a 1892, George Cantor llama a la Teoría de Conjuntos como Teoría de Variedades, siguiendo la idea de Bernard Riemann. Probó que R y Rn son equipotentes, es decir, tienen la misma cardinalidad (mismo número de puntos); que los números racionales son numerables y que los números reales, no lo son. El concepto de “cardinalidad” llamó la atención de Cantor e intentó determinar la cardinalidad de R. Unos años después desarrolló los conjuntos bien ordenados y formuló la famosa Hipótesis del Continuo, cuyo enunciado afirma que “no existen conjuntos infinitos cuyo tamaño esté estrictamente comprendido entre el conjunto de los números naturales y del conjunto de los reales”. A los números reales también se le suele llamar “continuo”. En estas investigaciones introdujo la construcción de los números reales a través de sucesiones fundamentales también llamadas Sucesiones de Cauchy.
Los artrópodos fueron el grupo más abundante desde que la vida animal apareció en la Tierra
Durante la última década en el Reino Unido, se han identificado 19 nuevos mecanismos genéticos de resistencia en bacterias.
La ciencia, para mejores resultados, requiere constancia, equipamiento, infraestructura y recursos suficientes para realizar investigación de calidad.
La 4T presume que sus políticas están encaminadas a alcanzar la soberanía alimentaria, sin embargo, se han eliminado los apoyos de comercialización y programas que aseguraban un ingreso para los campesinos.
El impacto social de los Beatles ha sido sumamente importante; en materia musical y de producción de sonido desataron una auténtica revolución, y ahora la inteligencia artificial nos acerca a lo que pudo haber sido.
Pero los métodos subjetivos de conocimiento de la historia como el de comprender (o “verstehen”) no resuelven el problema de la objetividad.
"Al pueblo de los Emiratos Árabes Unidos, a las naciones árabes y musulmanas, anunciamos la llegada con éxito a la órbita de Marte. Alabado sea Dios".
No es raro encontrar bosques enfermos: aquéllos con hojas amarillas o cafés, troncos llenos de grumos resinosos, follaje manchado y, en los casos más graves, la presencia masiva de plantas o insectos parásitos.
El androcentrismo es la palabra empleada para hacer referencia a la masculinización de lo cotidiano en las prácticas sociales, culturales y en el ámbito científico.
Se observaron más microplásticos en los polvos atmosféricos cerca de los centros industriales, comerciales y urbanos como: Tlalnepantla, Iztapalapa y La Merced.
El famoso Axioma de elección juega un poco con la intuición humana, ya que demuestra que todo conjunto puede ser bien ordenado, aunque no se muestra cuál es ese orden.
El fósforo blanco ha sido usado durante varias guerras de conflagración mundial, y usada, en menor escala, en forma de bombas o cohetes. Este químico se usó contra Irak, Chechenia, Gaza y Libia, cobrando millones de vidas.
México cerró su participación en el sexto lugar general de 55 naciones participantes.
El movimiento pedagógico “matemática moderna”, de los años 50-60 del s. XX, trajo consecuencias funestas en la educación; por ello, en los años 70, matemáticos como Morris Kline, escribieron este libro que a nuestro juicio tiene actual vigencia.
¿Y si existieran tatuajes que detecten cuándo y a qué le ponemos atención; o robots que “colaboran” con trabajadores? Estos avances tecnológicos relacionados con la neurociencia ya existen, pero ¿para qué y qué consecuencias trae a los millones de ciudadanos?
Chocolate para el Bienestar: un toque de azúcar, una gran contradicción
Intentan estudiantes de la UNAM bloquear reforma disciplinaria
Arranca el programa “Cosechando Soberanía”… ¿y Sembrando Vida?
Papa Francisco podría aparecer en el Ángelus, anuncia Vaticano
Soberana presencia de la Patria, de Diana Morán Garay
"Shen Yun": evento que promueve adoctrinamiento contra China
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador