Cargando, por favor espere...

Matemáticas
Alexander Grothendieck: el gran matemático del Siglo XX (segunda parte)
El trabajo matemático de Alexander Grothendieck se caracteriza por su originalidad y audacia en las ideas.


Escribir de la contribución matemática de Alexander Grothendieck para un público amplio es complejo, dadas las características de la matemática contemporánea, además, sus contribuciones han sido publicadas en miles de páginas de artículos y libros.

El trabajo matemático de Alexander Grothendieck se caracteriza por su originalidad y audacia en las ideas. Su vida científica y personal tiene periodos definidos:

1928-1948: contexto histórico que rodea su niñez y juventud.

1948-1954: el medio matemático en que se formó.

1954-1970: periodo de notable contribución matemática.

1970-1981: retiro de la vida pública matemática; a partir de 1981 escribe y difunde textos.

1991-2014: Aislamiento total del mundo, hasta su muerte. De este último periodo de su vida se sabe poco.

Alexander Grothendieck nació el 28 de marzo de 1928; su padre, Alexander Shapiro (1889-1942), un político anarquista ruso, y su madre, Johanna Grothendieck, nacida en Hamburgo, colaboradora de movimientos de izquierda. Con el ascenso del Adolfo Hitler al poder, la familia sufrió persecución política y huyó a París, dejando a su pequeño hijo Alexander bajo la protección de la familia de un pastor luterano. En 1942, el padre de Alexander fue internado en Auschwitz, donde murió. Entre 1940 y 1945 Alexander Grothendieck completó sus estudios de bachillerato, pasando una serie de peripecias, producto de la ocupación nazi.

En los años 1945-1948 realizó sus estudios en la Universidad de Montpellier, en donde obtuvo la licenciatura en matemática. Durante los años 1948-1949 inició en París el Seminario Henri Cartanque se prolongó hasta 1964; este seminario convirtió a París en el polo mundial de la Topología AlgebraicaEn este periodo, Grothendieck escribió su primera memoria, en la que redescubrió la integral de Lebesgue. Fue recomendado por su profesor de Cálculo, Monsieur Soula, para ir a París y tomar contacto con Élie Cartan; sin embargo, sólo con el connotado matemático de la Escuela Normal Superior de París pudo tomar contacto, Henri Cartan –hijo de Élie– . Fue en ese momento, 1951, cuando tuvo contacto con grandes matemáticos: conoció a Claude Chevalley, André Weil, Jean Pierre Serre, Laurent Schwartz, Jean Dieudonné, Roger Godement, Jean Desarte –pertenecientes al famoso grupo Bourbaki–. Henri Cartan le aconsejó que se pusiera en contacto con Jean Dieudonné y Laurent Schawartz (Medalla Field 1950) en la Universidad de Nancy. Una anécdota que cuenta Laurent Schwartz en su autobiografía.

“Acabábamos de publicar un artículo que incluía 14 cuestiones, problemas que no habíamos podido resolver, y Dieudonné propuso a Grothendieck a pensar en ellos. No lo vimos durante algunas semanas. Cuando apareció de nuevo, había resuelto la mitad de las cuestiones, con soluciones profundas y difíciles que necesitaban nuevos conceptos. Estábamos maravillados”. Durante ese año resolvió todos los demás problemas.

En ese preciso momento, ambos se percataron de que estaban frente a una mente brillante, un matemático de primer nivel, que revolucionaría la matemática de la segunda mitad del Siglo XX.Grothendieck se incorporó al grupo de investigación y empezaron a trabajar en espacios vectoriales topológicos.Las difíciles condiciones laborales para alguien que no tuviera la nacionalidad francesa le obligaron a inmigrar para terminar su periodo doctoral, dirigido por Laurent Schwartz.

Entre 1953 y 1955 fue profesor visitante en la Universidad de Sao Paulo, en Brasil, donde impartió un curso sobre espacios vectoriales topológicos, cuyas notas de clase se convirtieron en libro de referencia para los especialistas del tema. La tesis doctoral de Grothendieck, titulada Productos tensoriales topológicos y espacios nucleares fue defendida el 28 de febrero de 1953 en París y luego publicada en el volumen 16 de Memoirs of te American Mathematical Society en 1955. Esta tesis contiene nuevas técnicas e ideas que iban a renovar el Análisis Funcional. Su director de tesis afirmaría:

“Es un momento, una obra maestra de primer orden. Fue necesario leerla, comprenderla y aprender de ella, porque era difícil y profunda. y llevó seis meses a plena dedicación. ¡Qué trabajo tan duro, pero qué felicidad! Aprendí muchísimas cosas. Es la más bella de mis tesis”. 


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

La matemática no lo demuestra todo

Desde el inicio de la cuarta revolución matemática, en las primeras décadas del Siglo XX, el formalismo hilbertiano ha caracterizado el trabajo matemático hasta el día de hoy. Este paradigma histórico del formalismo se caracteriza por...

Fourier y su contribución a la matemática moderna

Fourier consideraba que toda función continua puede representarse como una serie infinita de senos y cosenos.

Entre la Historia y la Matemática

El tránsito hacia una matemática filosófica exige iniciar una quinta revolución matemática; para ello, el estudio de la historia desde el hacer de un matemático es fundamental.

Los romances de Albert Einstein en la Guerra Fría

No vamos a juzgar la vida privada de este gran científico, la reflexión es aprender a separar los logros científicos de una persona y sus debilidades humanas.

Dios creó a los números, de Stephen Hawking

Dios creó a los números es el titulo de una de las obras más importantes del gran científico y divulgador Stephen Hawking.

En defensa del conocimiento

La idea de aprender sin esfuerzo hace que el conocimiento adquirido en los menores sea volátil, superficial, en desmedro de su capacidad intelectual; y preocupa que cada año el nivel académico e intelectual de niños y jóvenes está decayendo a sitios alarmantes.

La complejidad en la evolución matemática

Los procesos de abstracción propios de la matemática se empiezan a ver desde su génesis, desde la invención de los primeros números, las primeras formas geométricas y el primer sistema formal hace dos mil 300 años por los griegos.

Entre la filosofía y la Matemática

Mientras el trabajo matemático tiene reglas, axiomas, y su libertad está en función de estar gobernado por sistemas formales; en el trabajo filosófico...

La invención del infinito actual

Los objetos matemáticos, como constructos, se conciben en la mente humana; para ello se debe tener una idea precisa para formalizarlos y que luego emerjan sus propiedades.

Matemática en el Siglo XVII

La matemática del Siglo XVIII se caracteriza por su falta de rigor, por carecer de un cuerpo teórico para hacer a las nuevas herramientas matemáticas más eficientes.

Alexander Grothendieck: los últimos años de un gran matemático

El alejamiento de Alexander Grothendieck del mundo académico empezó en 1973, cuando decidió abandonar París y se estableció en un pequeño pueblo (Villecun) de Montpellier.

Azucena Cordero: ejemplo de disciplina y tenacidad

Hoy día, Azucena Cordero cursa el séptimo semestre de la carrera de ingeniería en Gestión Empresarial. Su disciplina, tenacidad y voluntad la llevaron a colocar muy en alto el nombre del Instituto Tecnológico de Tecomatlán.

El método axiomático en la geometría

El método axiomático en la geometría es quizás el aporte más notable que ha dado la matemática a la humanidad.

Miguel de Guzmán: matemático y humanista

Fue nombrado miembro de la Real Academia de Ciencias Exactas, Físicas y Naturales en 1983; entre 1991 y 1993 fue presidente de la Comisión Internacional de Instrucción Matemática (ICMI).

Las revoluciones matemáticas

La matemática es un constructo humano, constituido por un conjunto de sistemas formales.