Cargando, por favor espere...
Joseph Fourier (1738-1830) fue un matemático francés que vivió en la época napoleónica, de grandes cambios a favor de la ciencia. Su contribución más importante fue en la teoría matemática de difusión, en donde profundizó las series que llevan su apellido e inventó las transformadas de Fourier. Las series de Fourier fueron establecidas en los trabajos de Leonard Euler (1707-1783), Brook Taylor (1685-1731), Daniel Bernoulli (1700-1782), Jean D’Alembert (1717-1783), a principios del Siglo XIX, aún quedan las secuelas de la matemática poco rigurosa del Siglo XVIII.
Bajo estas deficiencias, Joseph Fourier hizo un planteamiento a la Academia de Ciencias de París, que fue publicado (en su versión más acabada) en 1822, como: Teoría de propagación del calor de los sólidos. Las críticas que recibió de matemáticos connotados como Lagrange, Laplace, Lacroix y Monge, hizo que no se publicara antes. A pesar de las críticas que recibió por la falta de rigor en sus afirmaciones, Fourier consideraba que toda función continua puede representarse como una serie infinita de senos y cosenos, en donde hacía cálculos de integrabilidad en series infinitas, sin mayor fundamento. Joseph Fourier no consideraba importante todo ello, para él lo más importante era que describiera o diera cuenta del fenómeno físico –en este caso, la propagación del calor–, tenía una visión utilitarista de la matemática y consideraba que ésta debería ponerse al servicio de resolver los problemas naturales y sociales. No vivió para ver que sus ideas serían esenciales para el desarrollo de la matemática moderna e incluso con proyecciones tecnológicas insospechadas en su época; por ejemplo, hoy la teoría de Fourier fundamenta la teoría de señales, la transmisión de sonido e imágenes, el desarrollo de la transformada de Fourier es muy importante en astrofísica. En este artículo describiremos brevemente la contribución de las ideas de Fourier que repercutieron en el desarrollo de la matemática moderna:
La escritura de una función como una serie trigonométrica infinita genera preguntas interesantes, por ejemplo, cuáles son los puntos en donde ésta converge; el mismo Fourier había trabajado con funciones con un número finito de discontinuidades. Fue George Cantor quien trabajó este problema en su tesis doctoral, para un número infinito de discontinuidades. Cantor concibió los conjuntos derivados, los puntos de acumulación y las ideas básicas de la topología conjuntista.
En 1829, a partir de su estudio de la convergencia de la serie de Fourier, Peter Dirichlet (1802-1856) demostró que la serie es convergente para una función continua y acotada y que los coeficientes de Fourier están bien definidos. A raíz de estos estudios, Dirichlet dio la primera definición de función similar a la de hoy día.
Bernhard Riemann (1826-1866) extendió la noción de integral, a fin de hacer plausible la representación en serie de una función, introdujo la derivada generalizada.
Condujo a la invención del concepto de convergencia uniforme, usado por Karl Weiertrass (1815-1897), para integrar término a término la serie de Fourier.
A fines del Siglo XIX se empezaron a estudiar las series divergentes.
Henry Lebesgue (1875-1941) inició, en 1902, su teoría de integración; inspirado en los trabajos de Fourier, inventó la integral de Lebesgue para recuperar la función original a partir de los coeficientes de Fourier.
En los primeros años del Siglo XX estudió los sistemas ortogonales (generalizando la idea de ortogonalidad de Fourier), que conducen a los espacios de Hilbert, iniciando el estudio de los espacios L2 como espacio natural para la convergencia de las series de Fourier. El estudio de las series de Fourier se profundizó en el Siglo XX, creándose la teoría moderna del análisis armónico.
Ha sido fuente de inspiración de trabajos sobre convergencia de series de grandes analistas como Henry Lebesgue (1875-1941), Frygies Riesz (1800-1956), Marcel Riesz (1886-1969), Andrei Kolgomorov (1903-1987), Nikolai Lusin (1883-1960), Antony Zygmund (1900 -1992), Lennart Carleson (1928- ), etc.
Es importante mencionar a la teoría de ondículas, cuyos orígenes están en las ideas de Fourier, como un punto de encuentro de físicos, ingenieros y matemáticos. Fue introducida por Yves Meyer en 1985, gracias a la interacción con el físico Alex Grossman y el ingeniero Jean Morlet.
La situación actual en Palestina y el genocidio que ahí se vive por parte de Israel, nos obliga a revisar el pasado, buscando huellas que nos permitan tomar una posición crítica al respecto; en esta búsqueda vale la pena recordar un nombre, el de Yasser Arafat.
Su obra no no tiene hoy la difusión que merece; sobre ella se cierne esa conjura del silencio que siempre ha intentado acallar a quienes contradicen el ideario y la tradición dominantes.
El Centro Nacional de Investigaciones Científicas (CNRS) francés sostuvo que en plena selva amazónica descubrió una “extensa red de ciudades de dos mil 500 años de antigüedad”.
¿Qué es el imperialismo y por qué nos referimos a él como encarnación de la barbarie? ¿Quiénes representan hoy en día las fuerzas de la reacción y la revolución? La respuesta a estas interrogantes será lo más breve y concreta posible.
La historia, que no se olvide nunca, la hacen los pueblos y hoy, los pueblos, tienen la palabra.
Durante la Primera Guerra Mundial se dio el debate sobre si los socialistas debían o no apoyar a los gobiernos de los diferentes países en pugna.
Todavía queda una tarea, la más importante y significativa... fue precisamente la que Lenin señaló una vez tomado el Palacio de Invierno: “Ahora nos dedicaremos a edificar el socialismo”.
Hay que decir que la tesis de un arte contemporáneo descompuesto es sumamente escasa en las voces de los especialistas.
La teoría de la medida es una parte de la matemática contemporánea.
John Locke, médico y pensador inglés, quien, junto con Hobbes, Rousseau y Montesquieu, delinearon, durante los Siglos XVII y XVIII los fundamentos del liberalismo democrático, teoría política que hoy nos rige.
Aunque es esencial conocer el pasado para comprender el presente; es necesario saber cómo construir y asimilar ese conocimiento para el análisis concreto de la realidad. Esta segunda forma de valorar la importancia histórica de la obra de Lenin es la que intentaré esbozar.
Mariana considera que la tradición de lo fantástico en su sentido terrorífico en la literatura latinoamericana es menos prolífica que en otras latitudes.
Frente a la monumental tarea de edificar un socialismo que satisficiera las necesidades de la población, Lenin promovió políticas económicas innovadoras en favor del desarrollo comercial, industrial y económico de una Rusia que se había rezagado en el feudalismo.
En la primera mitad del Siglo XX aparece el fenómeno de la masificación de la educación matemática, periodo en que la matemática entra en la revolución del formalismo hilbertiano.
Los matemáticos no sólo eran conocedores de la génesis de su disciplina, sino que ejercían una alta valoración de la Historia de la Matemática.
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador