Cargando, por favor espere...

Fourier y su contribución a la matemática moderna
Fourier consideraba que toda función continua puede representarse como una serie infinita de senos y cosenos.
Cargando...

Joseph Fourier (1738-1830) fue un matemático francés que vivió en la época napoleónica, de grandes cambios a favor de la ciencia. Su contribución más importante fue en la teoría matemática de difusión, en donde profundizó las series que llevan su apellido e inventó las transformadas de Fourier. Las series de Fourier fueron establecidas en los trabajos de Leonard Euler (1707-1783), Brook Taylor (1685-1731), Daniel Bernoulli (1700-1782), Jean D’Alembert (1717-1783), a principios del Siglo XIX, aún quedan las secuelas de la matemática poco rigurosa del Siglo XVIII.

Bajo estas deficiencias, Joseph Fourier hizo un planteamiento a la Academia de Ciencias de París, que fue publicado (en su versión más acabada) en 1822, como: Teoría de propagación del calor de los sólidos. Las críticas que recibió de matemáticos connotados como Lagrange, Laplace, Lacroix y Monge, hizo que no se publicara antes. A pesar de las críticas que recibió por la falta de rigor en sus afirmaciones, Fourier consideraba que toda función continua puede representarse como una serie infinita de senos y cosenos, en donde hacía cálculos de integrabilidad en series infinitas, sin mayor fundamento. Joseph Fourier no consideraba importante todo ello, para él lo más importante era que describiera o diera cuenta del fenómeno físico –en este caso, la propagación del calor–, tenía una visión utilitarista de la matemática y consideraba que ésta debería ponerse al servicio de resolver los problemas naturales y sociales. No vivió para ver que sus ideas serían esenciales para el desarrollo de la matemática moderna e incluso con proyecciones tecnológicas insospechadas en su época; por ejemplo, hoy la teoría de Fourier fundamenta la teoría de señales, la transmisión de sonido e imágenes, el desarrollo de la transformada de Fourier es muy importante en astrofísica. En este artículo describiremos brevemente la contribución de las ideas de Fourier que repercutieron en el desarrollo de la matemática moderna:

La escritura de una función como una serie trigonométrica infinita genera preguntas interesantes, por ejemplo, cuáles son los puntos en donde ésta converge; el mismo Fourier había trabajado con funciones con un número finito de discontinuidades. Fue George Cantor quien trabajó este problema en su tesis doctoral, para un número infinito de discontinuidades. Cantor concibió los conjuntos derivados, los puntos de acumulación y las ideas básicas de la topología conjuntista.

En 1829, a partir de su estudio de la convergencia de la serie de Fourier, Peter Dirichlet (1802-1856) demostró que la serie es convergente para una función continua y acotada y que los coeficientes de Fourier están bien definidos. A raíz de estos estudios, Dirichlet dio la primera definición de función similar a la de hoy día.

Bernhard Riemann (1826-1866) extendió la noción de integral, a fin de hacer plausible la representación en serie de una función, introdujo la derivada generalizada.

Condujo a la invención del concepto de convergencia uniforme, usado por Karl Weiertrass (1815-1897), para integrar término a término la serie de Fourier.

A fines del Siglo XIX se empezaron a estudiar las series divergentes.

Henry Lebesgue (1875-1941) inició, en 1902, su teoría de integración; inspirado en los trabajos de Fourier, inventó la integral de Lebesgue para recuperar la función original a partir de los coeficientes de Fourier.

En los primeros años del Siglo XX estudió los sistemas ortogonales (generalizando la idea de ortogonalidad de Fourier), que conducen a los espacios de Hilbert, iniciando el estudio de los espacios L2 como espacio natural para la convergencia de las series de Fourier. El estudio de las series de Fourier se profundizó en el Siglo XX, creándose la teoría moderna del análisis armónico.

Ha sido fuente de inspiración de trabajos sobre convergencia de series de grandes analistas como Henry Lebesgue (1875-1941), Frygies Riesz (1800-1956), Marcel Riesz (1886-1969), Andrei Kolgomorov (1903-1987), Nikolai Lusin (1883-1960), Antony Zygmund (1900 -1992), Lennart Carleson (1928- ), etc.

Es importante mencionar a la teoría de ondículas, cuyos orígenes están en las ideas de Fourier, como un punto de encuentro de físicos, ingenieros y matemáticos. Fue introducida por Yves Meyer en 1985, gracias a la interacción con el físico Alex Grossman y el ingeniero Jean Morlet. 

 


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

Este hallazgo pone en duda la teoría de que los abecedarios se originaron en Egipto después del año 1900 a.C.

Los modos del pensamiento matemático influyen en su hacer, el Siglo XX ha sido testigo de al menos dos formas de este hacer, con marcada influencia ideológica.

En esta ocasión transcribimos fragmentos del Romance de Don Quijote de la Mancha (El último capítulo), obra del poeta yucateco José Peón Contreras (1843-1907).

En 25 años, las páginas de buzos han narrado los hechos de México y el mundo.

Un grupo de brillantes matemáticos franceses, autodenominado Bourbaki desarrolló, desde las primeras décadas del Siglo XX, un programa fundacional de la matemática con gran influencia en el trabajo matemático contemporáneo.

Los matemáticos no sólo eran conocedores de la génesis de su disciplina, sino que ejercían una alta valoración de la Historia de la Matemática.

La recta geométrica como objeto matemático tiene una naturaleza distinta a los números.

John Locke, médico y pensador inglés, quien, junto con Hobbes, Rousseau y Montesquieu, delinearon, durante los Siglos XVII y XVIII los fundamentos del liberalismo democrático, teoría política que hoy nos rige.

El beisbol revolucionario de Cuba ha demostrado su dominio y calidad en el escenario internacional. Figuras como Yulieski Gourriel, Frederich Cepeda, Héctor Olivera, Alexei Bell y Ariel Pestano han dejado una huella perdurable en el beisbol cubano, ganándose el respeto de los aficionados.

El hallazgo sucedió en mayo de 2022 por el paleontólogo Damien Boschetto, quien observó en el borde de un acantilado derrumbado un hueso expuesto.

El tránsito hacia una matemática filosófica exige iniciar una quinta revolución matemática; para ello, el estudio de la historia desde el hacer de un matemático es fundamental.

Mariana considera que la tradición de lo fantástico en su sentido terrorífico en la literatura latinoamericana es menos prolífica que en otras latitudes.

América Latina es la región más desigual del mundo.

El ser humano ha entendido las diferentes formas de vida a través de la observación, distinguiendo las similitudes y diferencias de los organismos.

En la novela hay contenidos novedosos y muy atractivos, como es el caso de la relación de algunos de los hábitos culturales de los pescadores de Veracruz, Boca del Río y Mandinga.