Cargando, por favor espere...
Dios creó a los números es el titulo de una de las obras más importantes del gran científico y divulgador Stephen Hawking. Es muy probable que el título sea una síntesis de una afirmación del Siglo XIX realizada por el matemático alemán Leopold Kronecker, que decía “Dios hizo los números enteros; el resto es obra del hombre”.
Kronecker defendía que la aritmética y el análisis deberían estar fundados en los números enteros, prescindiendo de los números irracionales e imaginarios. Su mente finitista lo convirtió en un precursor del intuicionismo.
Stephen Hawking no era un matemático en estricto rigor, pero conocía mucha matemática que utilizó con gran destreza en sus investigaciones. Fue capaz de seleccionar 31 logros fundamentales del pensamiento matemático, desde Euclides hasta los números transfinitos, además de la biografía de 17 grandes matemáticos, con un análisis del significado conceptual de sus investigaciones. Todo ello se encuentra en un solo libro que Hawking tituló Dios creó a los números y que constituye uno de los grandes aportes en el estudio de la Historia de la Matemática.
Por primera vez se ponen a disposición traducciones al español de obras históricas de la mayor relevancia, como Elementos (libros I, V, VII, IX y X), de Euclides. Las obras de Arquímedes: Sobre la esfera y el cilindro (selección), Medida del círculo (proposiciones 1 a 3), El arenario, Método sobre teoremas mecánicos, dedicado a Eratóstenes. Los libros II, III y V de la Aritmética de Diofanto. La Geometría, de René Descartes. Principia, de Isaac Newton. Ensayo filosófico sobre las probabilidades, De los métodos analíticos del cálculo de probabilidades, de Pierre Simon Laplace. El capítulo III de la Teoría analítica del calor, de Joseph Fourier. Secciones III y IV de las Disquisiones aritméticas, de Carl Gauss. Cálculo diferencial (tercera y cuarta lección), Cálculo integral (lecciones 21, 22, 23 y 24), de Agustín Cauchy. Investigación sobre las leyes del pensamiento, de George Boole. Sobre la representatividad de una función mediante una serie trigonométrica (selección), Sobre las hipótesis en que se funda la geometría, Sobre el número de primos menores que una cantidad dada, de Bernhard Riemann. Una teoría de funciones (selección), de Karl Weierstrass. ¿Qué son y para qué sirven los números? (selección), de Richard Dedekind. Fundamentos de la teoría de los números transfinitos (selección), de George Cantor. Integral, longitud y área (selección), de Henri Lebesgue. Sobre sentencias formalmente indecidibles, de Principia Mathematica y sistemas afines (selección), de Kurt Gödel. Sobre números computables, con una aplicación al entscheidungsproblem, de Alan Turing,
Si bien es cierto que existen otras obras centrales en la Historia de la Matemática, con otros resultados matemáticos que no han sido considerados (para que no aumente el volumen del libro), los que están en el libro Dios creó a los números son centrales, y bien seleccionados. Cualquier persona que quiera adentrarse al pensamiento matemático histórico, debe estudiar libros de Historia de la Matemática desarrollados por matemáticos, pero también el libro Dios creó a los números, de Stephen Hawking, una exquisita opción, donde encontrará la biografía y el pensamiento matemático relevante en el desarrollo de la disciplina. Muchas veces los libros de Historia de la Matemática, se centran en la biografía y un desarrollo matemático adaptado a la matemática actual; sin embargo, ver directamente los textos originales, escritos por los matemáticos que han hecho la historia de la matemática, no sólo es presenciar la admirable obra matemática en su génesis, sino también acceder a un conocimiento más profundo para entender, interiorizar y admirar este gran constructo humano, quizás el más grande de todas las invenciones humanas.
Para saber matemática no se necesita ser un poeta, como decía Karl Weiertrass (lo dijo en un contexto distinto a lo que mucha gente cree), sino ser un estudioso de su historia, de sus ideas intrínsecas y de su filosofía. Si se contribuye al conocimiento matemático (investigación) desde esta mirada, con seguridad se estará haciendo un verdadero aporte que trascienda los ámbitos académicos.
El teorema más popular en matemática es probablemente el llamado Teorema de Pitágoras.
El Siglo XXI es de la comunicación matemática, espero que en el futuro se sumen una mayor cantidad de divulgadores y difusores del conocimiento matemático, así la contribución para nuestra sociedad será enorme, entre sus muchos beneficios, porque mejorará la educación ciudadana.
El desarrollo de la investigación matemática ha sido tan espectacular, que abarcar todo el conocimiento actual de la matemática se ha vuelto imposible para cualquier ser humano.
La teoría de la medida es una parte de la matemática contemporánea.
El alejamiento de Alexander Grothendieck del mundo académico empezó en 1973, cuando decidió abandonar París y se estableció en un pequeño pueblo (Villecun) de Montpellier.
Ninguno de estos libros me parece copia o similares a los libros estándar.
El número más famoso en la matemática es el llamado pi, denotado por π.
Cada 14 de marzo se celebra el a la Matemática. Esta fecha fue elegida en virtud de que hace alusión a 3.14, que es el valor aproximado del enigmático número Pi (π).
En la primera mitad del Siglo XX aparece el fenómeno de la masificación de la educación matemática, periodo en que la matemática entra en la revolución del formalismo hilbertiano.
Uno de los conceptos que más ha apasionado a los seres humanos es la idea de infinito.
Dios creó a los números es el titulo de una de las obras más importantes del gran científico y divulgador Stephen Hawking.
Fourier consideraba que toda función continua puede representarse como una serie infinita de senos y cosenos.
Un grupo de brillantes matemáticos franceses, autodenominado Bourbaki desarrolló, desde las primeras décadas del Siglo XX, un programa fundacional de la matemática con gran influencia en el trabajo matemático contemporáneo.
En la novela Los crímenes de Oxford, su autor, el doctor en Matemáticas y escritor argentino Guillermo Martínez, es un ejemplo de convergencia de estas dos áreas aparentemente disímiles: matemáticas y literatura.
En la ruleta los resultados son equiprobables, no hay predilección por ningún número o color.
Trabajadores de la educación piden diálogo a SEP por certeza laboral
Colectivos piden parlamento abierto para revisar iniciativas sobre desapariciones en México
Hallan fosas clandestinas cerca de la cuna de AMLO
Congreso capitalino advierte sobre fraudes inmobiliarios
Fentanilo: más que un vicio, una enfermedad, advierte especialista en neurociencias
Frenan vecinos de Azcapotzalco construcción de albergue para migrantes
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador