Cargando, por favor espere...

Félix Klein y su Programa Erlangen
Félix Klein y su Programa Erlangen
Cargando...

Esta tesis fue la base para el inicio de sus investigaciones futuras. El principio de su notable carrera como matemático fue en 1871, cuando publicó dos artículos titulados Sobre la denominada geometría no euclídeademostrando que es posible tanto a la geometría euclidiana como a las no euclidianas como casos particulares de la geometría proyectiva –también llamada geometría de posición–, introducida por Christian von Stardt (1798 - 1868). Por este trabajo, en 1872 fue nombrado catedrático de la Universidad de Erlangen. Como era costumbre en la época de Klein, tenía que dar una conferencia en la universidad. Esta conferencia se tituló Reflexiones comparativas sobre nuevas investigaciones en geometría y en ella resume sus investigaciones recientes, establece que la geometría no es sino el estudio de los invariantes de un grupo de transformación, es decir, existen tantas geometrías como grupos de transformaciones. Esta perspectiva ayudaría en el futuro a entender la teoría de la relatividad de Albert Einstein como una geometría lorentziana. Esta contribución se conoce como el Programa Erlangen, que concibe el concepto de grupo de manera general, conectándolo con la clasificación de las geometrías. Introduce grupos de transformación que dejan invariantes las propiedades geométricas y estos grupos los asocia con su respectiva geometría. En la época existían cuatro geometrías: euclidiana, afín, proyectiva e hiperbólica. 

Félix Klein, pasó a ocupar la cátedra de la Escuela técnica de Munich en 1875 y se casó con Anna Hegel, nieta del famoso filósofo G.W.F.Hegel (1770 - 1830). De 1880 a 1886 ocupó una cátedra en la Universidad de Leipzig. Se le recuerda como un excelente profesor, fueron sus mejores años de producción matemática, no sólo en la geometría, sino también en la teoría de funciones de variable compleja, desarrollando la teoría de funciones automorfas. 

Félix Klein, entró en comunicación con el joven matemático Henri Poincaré (1854 - 1912), para informarle de sus propias investigaciones, sin embargo, fueron comunicaciones un tanto conflictivas. Desde 1886 ocupó una cátedra en la universidad de Gotinga, en donde se estableció hasta su muerte. 

La rivalidad científica entre Klein y Poincaré por llegar primeros a resultados antes que el otro terminó con agotar a Félix Klein, enfermándolo seriamente; nunca más tuvo la productividad matemática de antes.

Félix Klein perdió su capacidad creativa, pero se ocupó con mucho ahínco de tareas directivas y organizativas, demostrando su competencia e influyendo en el desarrollo de la matemática alemana. Nunca perdió sus capacidades docentes y fue muy reconocido por sus alumnos y colegas. Estuvo muy preocupado por la enseñanza de la matemática; en 1908 fue designado presidente de la Comisión Internacional de la Enseñanza de la Matemática. Una de sus obras más famosas es Elementos de la matemática elemental desde el punto de vista superior, cuyo primer volumen está dedicado a la aritmética, álgebra y análisis, mientras el segundo volumen a la geometría.

La historia de la matemática fue de mucho interés para Félix Klein; se encargó de las obras completas de su profesor Plücker, Möbius, Gauss, Grassmann y Riemann. Durante muchos años brindó conferencias sobre historia de la matemática del Siglo XIX, donde él mismo era protagonista. Producto de seminarios que impartió entre 1914 y 1915, sobre historia de la matemática aparece primero una versión escrita de sus conferencias, para luego póstumamente ser publicado en 1926 bajo el título Lecciones sobre el desarrollo histórico de la matemática del Siglo XIX. Además, dejó un legado de 63 tesis doctorales dirigidas, una visión académica y una estructura organizativa para potenciar a la investigación matemática que hasta hoy se sigue.

Félix Klein se jubiló en la Universidad de Gotinga en 1913, muriendo producto de una grave enfermedad el 22 de junio 1925, a los 76 años. Fue sepultado en el Cementerio de la ciudad de Gotinga. 

 


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

En la ruleta los resultados son equiprobables, no hay predilección por ningún número o color.

El desarrollo de la investigación matemática ha sido tan espectacular, que abarcar todo el conocimiento actual de la matemática se ha vuelto imposible para cualquier ser humano.

Mientras el trabajo matemático tiene reglas, axiomas, y su libertad está en función de estar gobernado por sistemas formales; en el trabajo filosófico...

Desde el inicio de la cuarta revolución matemática, en las primeras décadas del Siglo XX, el formalismo hilbertiano ha caracterizado el trabajo matemático hasta el día de hoy. Este paradigma histórico del formalismo se caracteriza por...

Albert Einstein es el físico más importante del Siglo XX, sus ideas profundas han revolucionado las bases de la física newtoniana, dejando estupefactos a los grandes físicos de su época.

Hoy día, Azucena Cordero cursa el séptimo semestre de la carrera de ingeniería en Gestión Empresarial. Su disciplina, tenacidad y voluntad la llevaron a colocar muy en alto el nombre del Instituto Tecnológico de Tecomatlán.

El alejamiento de Alexander Grothendieck del mundo académico empezó en 1973, cuando decidió abandonar París y se estableció en un pequeño pueblo (Villecun) de Montpellier.

La matemática del Siglo XVIII se caracteriza por su falta de rigor, por carecer de un cuerpo teórico para hacer a las nuevas herramientas matemáticas más eficientes.

A principios del Siglo XX se descubrieron tablillas de arcilla en Irak y papiros en Egipto que contenían problemas y soluciones con data de cinco mil a cuatro mil años.

El club de los matemáticos está constituido por un conjunto de seres humanos con alta formación matemática y capaces de inventar nuevos teoremas.

Matemático universal, capaz de conectar las ecuaciones diferenciales y el álgebra abstracta.

Luca Pacioli fue matemático, contador y profesor universitario.

Es sabido que no existe un premio Nobel para matemáticos.

La tenacidad en su trabajo le acompañó hasta una edad muy avanzada.

De todas las ciencias, probablemente es la matemática la que no tiene una definición precisa de su contenido.