Una de las características de la matemática del Siglo XX consiste en la conexión de áreas aparentemente distintas para resolver problemas de una de ellas con las técnicas de la otra área.
Cargando, por favor espere...
Félix Klein, pasó a ocupar la cátedra de la Escuela técnica de Munich en 1875 y se casó con Anna Hegel, nieta del famoso filósofo G.W.F.Hegel (1770 - 1830). De 1880 a 1886 ocupó una cátedra en la Universidad de Leipzig. Se le recuerda como un excelente profesor, fueron sus mejores años de producción matemática, no sólo en la geometría, sino también en la teoría de funciones de variable compleja, desarrollando la teoría de funciones automorfas.
Félix Klein, entró en comunicación con el joven matemático Henri Poincaré (1854 - 1912), para informarle de sus propias investigaciones, sin embargo, fueron comunicaciones un tanto conflictivas. Desde 1886 ocupó una cátedra en la universidad de Gotinga, en donde se estableció hasta su muerte.
La rivalidad científica entre Klein y Poincaré por llegar primeros a resultados antes que el otro terminó con agotar a Félix Klein, enfermándolo seriamente; nunca más tuvo la productividad matemática de antes.
Félix Klein perdió su capacidad creativa, pero se ocupó con mucho ahínco de tareas directivas y organizativas, demostrando su competencia e influyendo en el desarrollo de la matemática alemana. Nunca perdió sus capacidades docentes y fue muy reconocido por sus alumnos y colegas. Estuvo muy preocupado por la enseñanza de la matemática; en 1908 fue designado presidente de la Comisión Internacional de la Enseñanza de la Matemática. Una de sus obras más famosas es Elementos de la matemática elemental desde el punto de vista superior, cuyo primer volumen está dedicado a la aritmética, álgebra y análisis, mientras el segundo volumen a la geometría.
La historia de la matemática fue de mucho interés para Félix Klein; se encargó de las obras completas de su profesor Plücker, Möbius, Gauss, Grassmann y Riemann. Durante muchos años brindó conferencias sobre historia de la matemática del Siglo XIX, donde él mismo era protagonista. Producto de seminarios que impartió entre 1914 y 1915, sobre historia de la matemática aparece primero una versión escrita de sus conferencias, para luego póstumamente ser publicado en 1926 bajo el título Lecciones sobre el desarrollo histórico de la matemática del Siglo XIX. Además, dejó un legado de 63 tesis doctorales dirigidas, una visión académica y una estructura organizativa para potenciar a la investigación matemática que hasta hoy se sigue.
Félix Klein se jubiló en la Universidad de Gotinga en 1913, muriendo producto de una grave enfermedad el 22 de junio 1925, a los 76 años. Fue sepultado en el Cementerio de la ciudad de Gotinga.
Una de las características de la matemática del Siglo XX consiste en la conexión de áreas aparentemente distintas para resolver problemas de una de ellas con las técnicas de la otra área.
En algunos cursos de matemática universitaria, aparecen ciertos términos, como topología de la recta, topología del plano, gráficos topológicamente equivalentes, etc.
Las raíces históricas del álgebra escolar se desarrollaron hasta principios del Siglo XIX.
La única geometría conocida hasta mediados del Siglo XIX fue inventada por Euclides (330 a.C.) y ha sido llamada geometría euclidiana.
La geometría analítica es producto de un cambio epistémico en el hacer matemático.
En la educación básica y media, tradicionalmente se estudia aritmética, álgebra elemental, geometría euclidiana y trigonometría. En general, la educación ha segmentado el conocimiento y la matemática no ha sido la excepción.
La geometría euclidiana es también llamada geometría sintética o constructiva porque estudia los objetos sin el uso de coordenadas o métodos algebraicos inventados en el Siglo XVII, por lo que empezaron a llamarla geometría analítica.
La famosa frase de René Descartes “pienso luego existo” se escribió en la IV sección de su obra Discurso del Método.
Uno de los aspectos que caracterizan al conocimiento matemático, radica en su deducción estrictamente lógica.
En el transcurso de mis años de estudiante y de profesor universitario he conocido profesores universitarios que, con sólo tener una formación inicial en matemática, deciden formarse sin seguir algún posgrado.
Esta corriente filosófica es en realidad muy antigua, la primera idea de vincular el conocimiento en general con la matemática.
Un matemático es un científico básico, su formación requiere muchos años de preparación académica.
La profesión de matemático es bastante desconocida para la mayoría de las personas, casi siempre se le asocia a la de profesor de matemática, cuando son actividades distintas.
Los procesos de abstracción propios de la matemática se empiezan a ver desde su génesis, desde la invención de los primeros números, las primeras formas geométricas y el primer sistema formal hace dos mil 300 años por los griegos.
Este cerebro racional, con millones de conexiones neuronales, es también emocional, e ilógico.
Antorcha quiere una patria mejor a través de la cultura: Homero Aguirre
Comunidades de Soteapan anuncian bloqueo por falta de atención oficial
Madres buscadoras hallan 400 bolsas con presuntos restos humanos en Jalisco
“Generación Z” realidad y manipulación
La violenta historia de Estados Unidos en Latinoamérica
México importa 40.7 millones de toneladas de granos
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador