Cargando, por favor espere...

Matemáticas
El hacer matemático en el Siglo XX
Los modos del pensamiento matemático influyen en su hacer, el Siglo XX ha sido testigo de al menos dos formas de este hacer, con marcada influencia ideológica.


Los modos del pensamiento matemático influyen en su hacer, el Siglo XX ha sido testigo de al menos dos formas de este hacer, con marcada influencia ideológica, que nos llega hasta nuestros días, aunque en el Siglo XXI está experimentando una forma de hacer más interdisciplinaria, más utilitaria, en el fondo sigue siendo el mismo hacer con la misma ideología.

Los periodos que marcaron estas dos formas de hacer están comprendidos entre dos guerras mundiales, mientras Europa se debatía en una crisis política y militar, los matemáticos pensaban en proponer nuevas formas de pensamiento matemático para luego implantar su ideología a todo el mundo.

Este primer periodo nace en 1914 al inicio de la Primera Guerra Mundial, en donde se establece una pugna epistémica, entre el intuicionismo de J. Brouwer (1881-1966) y el formalismo de David Hilbert (1862-1943). Por un lado, el intuicionismo propugna un constructivismo en la creación de los objetos matemáticos, dejando de lado todo conocimiento matemático que incluya demostraciones por el absurdo y la existencia declarativa de los objetos matemáticos. Por otro lado, el formalismo propone eliminar la naturaleza de los objetos matemáticos para convertirlos en símbolos sintácticos y semánticos, gobernados por reglas iniciales de juego, llamados axiomas, dándole a la matemática una libertad sin precedentes en la historia. La visión formalista de Hilbert fue concebida gracias a dos hechos importantes: en 1908, E. Zermelo (1871-1953) propone el primer sistema formal y la puesta en escena de la naciente teoría de conjuntos por George Cantor. Aunque se propone ontologías y epistemologías distintas, ambas tienen el mismo propósito: contribuir a la fundamentación del hacer matemático, generar un único modo de pensamiento libre de ambigüedades y con mayor solidez.

El segundo periodo nace finalizando la Segunda Guerra Mundial en 1945, aunque se vino gestando desde 1935 con el nacimiento del grupo Bourbaki, después de 1945 y hasta 1989 –fecha en que el grupo desapareció–, donde tuvo la mayor influencia. La ideología Bourbakiana, de establecer un renacer de todo el conocimiento matemático, en base a un sistema axiomático formal riguroso, con un hacer matemático absolutamente rígido, eliminando aspectos que no contribuyen a la generación de mayores y mejores estructuras, basados en una lógica impecable y muy sintética. Esta característica se ha conservado hasta el día de hoy, donde prima la difícil lectura de los paper, pero con el potencial de ser leído y estudiado por cualquier ser humano entrenado. A pesar que el grupo Bourbaki ha desaparecido, quedó la secuela de los textos matemáticos que han seguido su ideología, formando a los matemáticos de todo el mundo desde los años 60 del Siglo XX. 

Estas dos formas del hacer y pensar matemático del Siglo XX están transitando a formas más sofisticadas pero a la vez más colaborativas; el matemático se aleja cada vez más de su antigua soledad para compartir su pensamiento y trabajo con otros matemáticos. Incluso es más común ver colaboraciones interdisciplinarias, contribuyendo a la matematización de otras disciplinas. Hoy, algunos matemáticos se sienten atraídos por lo interdisciplinario. Aunque ya no tienen el peso político de antes, son mediáticos, quieren ser famosos en la divulgación o difusión e incluso muestran sus dotes artísticas y de comunicación. Quieren sentirse útiles en esta sociedad que cada día demanda más de sus científicos; pero en el fondo, en su trabajo, siguen siendo el mismo personaje, como lo fue Euclides del Siglo III a.C., o como lo es Terence Tao en la actualidad, rígido, formal, muy estructurado, en otras palabras, un neobourbakiano.

En la actualidad, el hacer matemático tiene distintos rostros que le dan alguna imagen académica dentro de la sociedad matemática, por ejemplo, solución de problemas –siempre que el problema sea importante–; dominar alguna técnica o método para crear nuevos; crear nuevas teorías, es decir, generar un nuevo marco conceptual para unificar o generalizar resultados existentes; descubrir un nuevo fenómeno matemático, conexión o contraejemplo. Los Bourbaki pretendían consolidar un cuerpo único de conocimiento; a través de sus Elementosel neoboubakianismo ha conseguido sólo establecer raíces comunes entre distintos árboles que constituyen el conocimiento matemático. 


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

as.jpg

La disminución de la biodiversidad podría aumentar el riesgo de enfermedades crónicas para la humanidad.

Reaparece tiburón de más de 500 años

El comportamiento migratorio de los tiburones de Groenlandia aún es un misterio para la comunidad científica.

NASA publicó imágenes del cometa ATLAS a su paso cerca del Sol

El cometa fue visible brevemente en los cielos del hemisferio norte.

A la caza del meteorito de Allende

El Meteorito de Allende abrió “una ventana para entender el origen del Sistema Solar” y junto a otro célebre meteorito “mexicano” de hace 66 millones de años en el área submarina de Chicxulub, ha aportado importantes conocimientos científicos sobre la historia de la Tierra.

Mueren al año 90 mil mexicanos por cáncer

Los especialistas indican que en todo el país se detectan alrededor de 195 mil casos de cáncer al año, los cuales tienen una tasa de mortalidad del 46%.

Mundo.jpg

Es la era del “dominio humano sobre los procesos biológicos, químicos y geológicos de la Tierra”.

¡Es hoy! Alineación planetaria histórica en la astronomía

Fenómeno que no se repetirá hasta el año 2040.

phil.jpg

Ota Benga fue un congoleño de 1.25 metros de alto que llegó en 1906 al zoológico de Nueva York. Fue vendido como esclavo y comprado por Samuel Verne, un antropólogo que viajaba para colectar “razas exóticas” para una feria en EE. UU.

huitlacoche.jpg

Aunque amado por unos y odiado por otros, el huitlacoche tiene un papel relevante en la economía, gastronomía y en la ciencia.

romeo.jpg

La historia de esa constante comenzó desde que el hombre tuvo necesidad de construir pirámides con bases circulares y cilíndricas, como lo demuestran los papiros de Ahmes y Moscú.

Científicos mexicanos enfrentan falta de presupuesto

"Durante esta administración empezamos muy mal desde que se decía que los científicos éramos la mafia. Todos los apoyos, hubo una reducción clara", afirmó el investigador Alfredo Herrera Estrella.

phili.jpg

Aquí te explico por qué es muy importante y necesario proporcionar apoyos económicos y de capacitación a los pequeños productores, ya que los pocos nutrientes afectan la rentabilidad del cultivo y, por ende, al campo mexicano.

iStock_000062461572_Large.jpg

Cuántas veces hemos tenido la duda de si tomar un medicamento alopático o un té para curar algún malestar o disminuir el síntoma de una enfermedad.

Sobrevivir al frío

Ante el descenso de temperaturas, los seres humanos se las han ingeniado para no pasar frío y continuar con sus actividades normales, pero qué pasa con los animales, ¿cómo sobreviven a las temperaturas bajas extremas? Te cuento.

romeo-911.jpg

Hoy sabemos que forma parte de los números irracionales y que es un número algebraico, al ser solución de una ecuación algebraica.