Cargando, por favor espere...
Un número es llamado primo cuando sólo tiene dos divisores distintos, el 1 y él mismo. Sin embargo, esta definición moderna debe tener una captura conceptual para definir un objeto matemático llamado número primo y que el 1 no satisface. Aclararemos este concepto, para luego proceder a entender la definición.
Remontarnos a la génesis histórica es fundamental para capturar la esencia conceptual de lo que hoy llamamos número primo.
A Pitágoras se le atribuye la idea conceptual de “primo”, que significa primero o primario, pero él no se refería a un número, sino a un elemento que guardaba relación con la creación del universo; decía que Dios creó una unidad mensurable a partir de donde se formó todo lo demás. Luego Parménides, siguiendo la idea Pitagórica, concluye que todo lo real debe ser siempre eterno e inmutable y debe poseer una unidad indivisible: “todo es uno”. Así, esta unidad es la esencia de todo, incluso de los objetos matemáticos griegos; esta idea está presente hasta el día de hoy cuando en el trabajo matemático se buscan generadores, bases o factorización prima, etc.
Nos remontaremos a los Elementosde Euclides (300 a.C.) donde por primera vez se sistematiza el conocimiento matemático y se establecen las primeras definiciones como un método para precisar conceptos.
La teoría de números aparece en los libros VII, VIII, y IX, y no se presentan de manera axiomática, sino conceptual; citaremos algunas definiciones para entender qué era un número para los griegos:
Definición VII.1. Una unidad es aquello en virtud de lo cual una de las cosas que hay se llama uno.
Definición VII.2. Número es una pluralidad compuesta de unidades.
Aquí tenemos la primera diferencia conceptual, mientras que la unidad (1) es una designación en abstracto de las cosas en singular o del “ser”, en cambio un número es un agregado de unidades, es decir, la unidad es parte de un número, pero no es un número. Por lo tanto, el 1 es un constructo mental indivisible, no es un número, para los griegos. La unidad y la pluralidad tienen estatus ontológicos distintos, son opuestos, como “el ser y el no ser”, por lo tanto, la unidad es distinta a los números.
Para los griegos, los números empiezan desde el 2, que sería el primero o “primo” como diríamos hoy día. El 1 o unidad no es número primo, porque no era considerado un número. Veamos qué era un número primo para los griegos.
En los Elementos de Euclides, se define:
Definición VII.7. Un número primo es el medido por la sola unidad.
Dado que la unidad no era un número, aquí no se trata de la divisibilidad de un número por sí mismo. Las definiciones más precisas vinieron después, por ejemplo, Nicómaco define número primo como aquel que es incompuesto.
La esencia conceptual y filosófica es establecer un origen de todo mediante un constructo mental llamado unidad o uno. Por lo tanto, concebida esta unidad, debemos buscar generar más objetos matemáticos; los griegos generaron por pluralidad los números naturales 2, 3, 4, … aun más en los Elementos de Euclides, aunque no hace referencia directa al teorema fundamental de la aritmética (cualquier número entero mayor que uno se puede expresar, de manera única, salvo el orden, en un producto de números primos) se puede ver su demostración en distintas proposiciones. Es decir, se sigue la línea filosófica pitagórica, y luego aristotélica. En el trabajo matemático es común seguir este pensamiento filosófico, se buscan elementos básicos generadores, como ideales primos, factorización prima, bases generadoras, grupos simples, invariantes geométricos, etc.
Esta tradición matemática de 26 siglos tuvo que ser formalizada y fundamentada rigurosamente a través de la teoría de conjuntos de George Cantor, la construcción numérica actual de los números incluye al 1 y al 0 como números naturales, definidos mediante la aceptación del conjunto vacío. Además, como número primario y generador es neutro, excluirlo se hace por una conveniencia teórica, lo mismo ocurre con el conjunto vacío, siempre se le excluye, porque generaría trivialidades en el trabajo matemático. Sin embargo, conceptualmente son fundamentales para el avance matemático.
El número más famoso en la matemática es el llamado pi, denotado por π.
La recta geométrica como objeto matemático tiene una naturaleza distinta a los números.
La idea de aprender sin esfuerzo hace que el conocimiento adquirido en los menores sea volátil, superficial, en desmedro de su capacidad intelectual; y preocupa que cada año el nivel académico e intelectual de niños y jóvenes está decayendo a sitios alarmantes.
El primer libro escrito por el profesor Baldor, fue su Álgebra, publicada en 1941, adoptado como texto oficial en Cuba.
El desarrollo de la investigación matemática ha sido tan espectacular, que abarcar todo el conocimiento actual de la matemática se ha vuelto imposible para cualquier ser humano.
Mientras el trabajo matemático tiene reglas, axiomas, y su libertad está en función de estar gobernado por sistemas formales; en el trabajo filosófico...
No vamos a juzgar la vida privada de este gran científico, la reflexión es aprender a separar los logros científicos de una persona y sus debilidades humanas.
En la primera mitad del Siglo XX aparece el fenómeno de la masificación de la educación matemática, periodo en que la matemática entra en la revolución del formalismo hilbertiano.
La matemática es un constructo humano, constituido por un conjunto de sistemas formales.
Un grupo de brillantes matemáticos franceses, autodenominado Bourbaki desarrolló, desde las primeras décadas del Siglo XX, un programa fundacional de la matemática con gran influencia en el trabajo matemático contemporáneo.
El Siglo XXI es de la comunicación matemática, espero que en el futuro se sumen una mayor cantidad de divulgadores y difusores del conocimiento matemático, así la contribución para nuestra sociedad será enorme, entre sus muchos beneficios, porque mejorará la educación ciudadana.
La existencia de los conjuntos infinitos en matemática es obra de George Cantor, quien quedó maravillado cuando descubrió algunas rarezas que emanaban de este objeto, sin darse cuenta que estaba a punto de ingresar en un fascinante mundo abstracto.
El alejamiento de Alexander Grothendieck del mundo académico empezó en 1973, cuando decidió abandonar París y se estableció en un pequeño pueblo (Villecun) de Montpellier.
Es posible crear una matemática filosófica desde el hacer de un matemático que sea realmente relevante y visionaria. Debe de ser una reflexión humanizante, pero a la vez esclarecedora del mundo de las ideas formales.
Matemático universal, capaz de conectar las ecuaciones diferenciales y el álgebra abstracta.
FNERRR reactivará movilizaciones en Oaxaca
Morena no avanza por su fuerza, sino por la debilidad de la oposición: Zepeda Patterson
Leer es una condición de clase
Hospitales y clínicas de Oaxaca van a paro por falta de insumos
Caen inversión y consumo en marzo: Inegi
Fue como llenar una presa, saldo de la tormenta del 2 de junio
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador