Cargando, por favor espere...

La historia en los primeros congresos internacionales de matemáticos
Los matemáticos no sólo eran conocedores de la génesis de su disciplina, sino que ejercían una alta valoración de la Historia de la Matemática.
Cargando...

A la formación de un matemático desde mediados del Siglo XX hasta la fecha se le ha desprovisto del conocimiento de la historia del pensamiento matemático; no hay cátedras de esta materia y si las hay son elementales, centradas en la vida de los personajes y no en la evolución conceptual de sus ideas. Esta característica es producto de la instalación del formalismo hilbertiano en el hacer de un matemático. Hasta fines del Siglo XIX y principios del XX, los matemáticos no sólo eran conocedores de la génesis de su disciplina, sino que ejercían una alta valoración de la Historia de la Matemática, como lo demuestran los primeros congresos internacionales de matemáticos.

Fue George Cantor el artífice de crear la Unión de Matemáticos Alemanes en 1890; una de sus metas era organizar un congreso internacional de matemáticos, que contó con el apoyo de Felix Klein, Charles Hermite y de Henri Poincaré. El primer congreso internacional de matemáticos se realizó del nueve al 11 de agosto de 1897 en la Escuela Politécnica de Zúrich. Este congreso tenía cinco secciones científicas: Aritmética y álgebra; Análisis y teoría de funciones; Geometría; Mecánica y fisicamatemática; Historia y bibliografía. Se muestran las áreas de mayor desarrollo matemático de la época. En la sesión de Historia se rindió homenaje a los grandes matemáticos del pasado, como a la familia Bernoulli, a Leonard Euler y Jakob Steiner. Se planteó la idea de publicar las obras completas de Leonard Euler. Se hizo un especial reconocimiento a la trayectoria académica de Charles Hermite. Además, se propuso la unificación de la terminología matemática y crear una clasificación bibliográfica para facilitar la investigación matemática. En este primer congreso asistieron 208 matemáticos de 16 países, se realizaron cuatro conferencias plenarias y 30 comunicaciones de las secciones. La estructura de este congreso marcó la pauta para todos los congresos internacionales que se celebran hasta el día de hoy.

El segundo congreso internacional fue organizado por la Sociedad Matemática de Francia; se celebró en París en 1900, bajo la misma estructura, es decir, considerando la sección de Historia de la Matemática. La sección de Historia tuvo una importancia transcendental, fue ahí en donde uno de los matemáticos más renombrados, David Hilbert, impartió la conferencia titulada Problemas matemáticos, se ofreció un resumen impreso de 23 problemas bajo el título: Sobre los problemas futuros de las matemáticas. Hilbert sólo alcanzó a explicar los 10 primeros y los restantes estaban en el resumen impreso. La importancia que ha tenido esta conferencia histórica es de la máxima relevancia; ha planteado problemas y programas de investigación que hasta el día de hoy siguen vigentes. Este congreso tuvo 250 participantes de 26 países. Otro hecho relevante es que las conferencias plenarias fueron de estilo histórico: la primera dada por Moritz Cantor, de Heidelberg, disertó sobre la historiografía de la matemática; el matemático italiano Vito Volterra disertó sobre Betti, Brioschi, Casorati, tres analistas italianos y su manera de encarar las cuestiones del análisis; Henri Poincaré disertó Sobre el rol de la intuición y la lógica en la matemática. La última plenaria estuvo a cargo de Mittag-Leffler, de Estocolmo, quien disertó Una página de la vida de Weierstrass. Es importante mencionar que en este congreso se incluyó por primera vez una sección de Enseñanza y método, revelando el interés de los grandes matemáticos de la época por la enseñanza de la matemática.

El tercer congreso internacional de matemáticos se realizó en Heidelberg en 1904, contando con un significativo apoyo económico del gobierno alemán; tuvo 336 participantes de 20 países, con 78 conferencias en las secciones; se realizó bajo la misma estructura de secciones (incluyendo Historia y bibliografía), se cambió de nombre la sección de Enseñanza y método por el de Pedagogía y la sección de Mecánica y fisicamatemática se cambió a Matemática aplicada. Las conferencias plenarias siguieron con un estilo histórico, tocando temas generales con una visión histórica y filosófica, revelando la cultura matemática que poseían los grandes matemáticos de esa época. A diferencia de lo que se observa hoy día, un ultraformalismo, que sólo es asequible al ultraespecialista. 


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

El libro invoca con frecuencia el índice de oportunidad, el cual plantea que si todos los individuos murieran a la misma edad y tuvieran el mismo número de hijos no habría selección natural porque ésta es propiciada por la mortalidad.

Los judíos del mundo deben hacer conciencia de que el imperialismo los está usando de parapeto para sus propósitos expoliadores. Si no se detiene su voracidad insaciable, seguirán siendo sus hijos los que entreguen sus vidas en Gaza.

El cerebro no aprende matemática si no se enfrenta a algo difícil, o por lo menos desafiante, que rete su imaginación y saque todo su potencial.

Un siglo después, las tesis centrales de Imperialismo, fase superior del capitalismo mantienen plenamente su vigencia.

América Latina es la región más desigual del mundo.

Hannah Arendt (1906-1975), filósofa e historiadora alemana.

Luca Pacioli fue matemático, contador y profesor universitario.

El alejamiento de Alexander Grothendieck del mundo académico empezó en 1973, cuando decidió abandonar París y se estableció en un pequeño pueblo (Villecun) de Montpellier.

En San Pedro de Conchos acaba de despejarse finalmente el sitio exacto donde se asentó la segunda misión franciscana de Chihuahua: a un lado de este templo y sobre un área del municipio de Rosales, del que San Pedro es sección municipal.

El gobierno de Benjamín Netanyahu ha incursionado directamente en los territorios de otros países, en especial contra Siria, Yemen y Líbano.

Aunque es esencial conocer el pasado para comprender el presente; es necesario saber cómo construir y asimilar ese conocimiento para el análisis concreto de la realidad. Esta segunda forma de valorar la importancia histórica de la obra de Lenin es la que intentaré esbozar.

La existencia de los conjuntos infinitos en matemática es obra de George Cantor, quien quedó maravillado cuando descubrió algunas rarezas que emanaban de este objeto, sin darse cuenta que estaba a punto de ingresar en un fascinante mundo abstracto.

La cinta que hoy comento, amable lector, es también una obra de arte con ese mismo sentido de denuncia hacia la ideología nazi-fascista y sus aplicaciones en el terreno práctico.

En la historia de México, 1994 es un año polémico.

En la primera mitad del Siglo XX aparece el fenómeno de la masificación de la educación matemática, periodo en que la matemática entra en la revolución del formalismo hilbertiano.