Cargando, por favor espere...
Gran parte del trabajo matemático radica en establecer conexiones o puentes entre objetos matemáticos de naturaleza distinta. Por ejemplo, la recta geométrica como objeto matemático tiene una naturaleza distinta a los números; generar una isovalencia entre ellos tardó 25 siglos de desarrollo matemático. En todo este periodo, no toda parte de una recta geométrica era susceptible de asociarle una magnitud (medida), por ejemplo, no se podía medir con exactitud la hipotenusa de un triángulo rectángulo cuyos catetos miden una unidad. Sólo era posible establecer una aproximación, y no el número concreto asociado a esta hipotenusa. Estas cosas generaron el siguiente problema: Si pretendemos asociar o identificar los puntos de la recta geométrica con los números (hasta la primera mitad del Siglo XIX, sólo se consideraban números a los enteros y a los racionales), es suficiente fijar un punto en la recta geométrica y una unidad de medida para llevar a cabo la asociación deseada. Primeramente, al punto fijo se le asocia el número cero, y con la unidad establecida se asocia a la derecha del cero el 1, luego el 2 y así sucesivamente, y a la izquierda del cero con la misma unidad de medida se va asociando el -1, luego el -2, y así sucesivamente. Incluso las fracciones tienen un lugar en la recta geométrica. Todo este trabajo es muy relativo al punto fijo elegido y a la unidad establecida, no existe una asociación absoluta de tales objetos (puntos y números), desde ahí existe un problema de inexactitud y constituye un ejemplo para demostrar que la matemática no es algo exacto como se cree, sino siempre relativa a un contexto matemático; para pretender una exactitud tenemos que formalizar cada acto como una invención humana.
Podemos preguntarnos ¿qué punto le corresponde a la longitud de la hipotenusa de un triángulo rectángulo de catetos que miden la unidad? Es decir, será posible ubicar lo que hoy llamamos en una recta geométrica de manera exacta, ¿quién puede hacerlo? Dudo que exista un ser humano que pueda ubicar el punto exacto que le corresponde. Se establece una ruptura cognitiva, que hasta el día de hoy persiste, debido a las limitaciones de la mente humana. Este problema fue resuelto desde el punto de vista matemático por Richard Dedekind en 1878, desde este momento fue posible conectar biyectivamente los puntos de la recta geométrica y los números que por primera vez incluían a los irracionales , , es decir, estos hoyos que poseía la recta geométrica fueron cubiertos por estos nuevos objetos numéricos, técnicamente se le llama completación de la recta real. Pasó a ser la recta geométrica un objeto continuo, identificable cada uno de sus puntos con un número real, dando un fundamento riguroso al concepto de límite o punto de acumulación en la recta y así fundamentar el naciente análisis matemático.
Hoy en día se ha establecido en el discurso matemático escolar esta asociación entre los puntos de la recta geométrica y los números reales, apelando a la intuición de los estudiantes se ubica a estos números irracionales en la recta geométrica. Por supuesto que la intuición no es ninguna garantía de certeza, humanamente seguimos sin ubicar exactamente el punto que corresponde a los números irracionales. Aquí existe algo inalcanzable para la mente humana.
La forma en que matemáticamente hemos dado existencia a los números irracionales ha sido con base en la idea de convergencia o aproximación, es decir, la formalización de una idea muy antigua, debido al griego Eudoxio y luego refinada por Agustín Cauchy y Karl Weierstrass, hemos tratado de capturar conceptualmente lo arbitrariamente pequeño mediante una definición formal. De esa manera, Richard Dedekind, con sus famosas cortaduras, y luego George Cantor, con su convergencia de sucesiones de Cauchy de racionales, dieron existencia a objetos matemáticos que existen en lo formal, pero que su naturaleza ontológica aún queda en el limbo de la mente humana.
En este sentido, la concepción ficcionalista de los objetos matemáticos, en particular de los números irracionales, recobra sentido, esclarece su naturaleza y nos permite ver a la matemática como un gran constructo cuya existencia sólo se encuentra en la mente humana.
El club de los matemáticos está constituido por un conjunto de seres humanos con alta formación matemática y capaces de inventar nuevos teoremas.
Los modos del pensamiento matemático influyen en su hacer, el Siglo XX ha sido testigo de al menos dos formas de este hacer, con marcada influencia ideológica.
Albert Einstein es el físico más importante del Siglo XX, sus ideas profundas han revolucionado las bases de la física newtoniana, dejando estupefactos a los grandes físicos de su época.
Desde el inicio de la cuarta revolución matemática, en las primeras décadas del Siglo XX, el formalismo hilbertiano ha caracterizado el trabajo matemático hasta el día de hoy. Este paradigma histórico del formalismo se caracteriza por...
El pensamiento lógico en el ser humano es una característica antropológica formada en el cerebro humano por miles de años de evolución.
La idea de aprender sin esfuerzo hace que el conocimiento adquirido en los menores sea volátil, superficial, en desmedro de su capacidad intelectual; y preocupa que cada año el nivel académico e intelectual de niños y jóvenes está decayendo a sitios alarmantes.
Los objetos matemáticos, como constructos, se conciben en la mente humana; para ello se debe tener una idea precisa para formalizarlos y que luego emerjan sus propiedades.
Uno de los conceptos que más ha apasionado a los seres humanos es la idea de infinito.
Esta medalla tiene la imagen del matemático griego Arquímedes y una inscripción que dice “Trascenderse a uno mismo y dominar el mundo”.
Es considerado el más prolífico de los matemáticos; su nombre figura en fórmulas, teoremas, números, integrales y constantes en distintas ramas de la matemática.
Ninguno de estos libros me parece copia o similares a los libros estándar.
Luca Pacioli fue matemático, contador y profesor universitario.
La recta geométrica como objeto matemático tiene una naturaleza distinta a los números.
En la novela Los crímenes de Oxford, su autor, el doctor en Matemáticas y escritor argentino Guillermo Martínez, es un ejemplo de convergencia de estas dos áreas aparentemente disímiles: matemáticas y literatura.
En la primera mitad del Siglo XX aparece el fenómeno de la masificación de la educación matemática, periodo en que la matemática entra en la revolución del formalismo hilbertiano.
Madres mexicanas enfrentan una brecha salarial de 40%
Gran Guerra Patria, la fase más atroz de la lucha de clases bajo el Imperialismo
INE cancelará 17 candidaturas judiciales
Facultades de UAEMex inician paro de labores
Cae estructura metálica en explanada de GAM; hay 7 lesionados
El legado político-moral de la victoria soviética sobre el nazifascismo
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador