Cargando, por favor espere...

La invención del infinito actual
Los objetos matemáticos, como constructos, se conciben en la mente humana; para ello se debe tener una idea precisa para formalizarlos y que luego emerjan sus propiedades.
Cargando...

Los objetos matemáticos, como constructos, se conciben en la mente humana; para ello se debe tener una idea precisa para formalizarlos y que luego emerjan sus propiedades. Existen ciertos objetos de enorme tamaño que escapan a nuestra mente limitada, por ejemplo, la totalidad de la recta real o la totalidad de los números naturales. Este problema existe desde que el ser humano empezó a pensar en los objetos de tamaño ilimitado. Fueron los griegos quienes empezaron a reflexionar profundamente, primero por la infinitud del Universo y luego por los objetos matemáticos de naturaleza ilimitada.

Desde la época griega hasta fines del Siglo XIX, lo único válido en el trabajo matemático es el llamado infinito potencial, es decir, aquel que nacía en el mismo acto operatorio y que intuitivamente afirmamos que puede seguirse realizando infinitamente; por ejemplo, en Grecia se entendía que los números naturales recobraban existencia en el acto operatorio de contar, hasta donde se quiera contar, y con la idea de que el acto de contar podía seguir más allá de lo necesitado. No era posible pensar en los números naturales como una totalidad, a esto inimaginable se le llamó infinito actual o en acto. Fue Aristóteles quien lo estableció así, como una característica esencial del trabajo matemático, trabajar potencialmente y no en acto.

Sin embargo, estos objetos inimaginables se sustituyen hoy por simples representaciones o notaciones; para el caso de los números naturales se escribe N para el caso de la recta real se escribe R, simplificando el concepto o idea de tales objetos, causando una ruptura cognitiva, no para los que lo aceptan sin mayor reflexión, sino para aquellos que poseen mayor agudeza mental.

Para dar existencia al infinito actual fue necesario capturar alguna propiedad esencial de tales objetos infinitos. El primero en darse cuenta de que algo esencial diferenciaba a los objetos finitos de los infinitos fue Galileo Galilei, quien mostró que para el caso de los números naturales (objeto infinito) poseía un subconjunto (los números pares), cuyos elementos se podían poner en correspondencia biunívoca con cada número natural (n ↔ 2n). Es decir, los números naturales poseen el mismo tamaño de un subconjunto de él. Ésta es la característica esencial que lo diferencia con los conjuntos finitos, propiedad que fue capturada por Richard Dedekind para definir por primera vez a los conjuntos infinitos: Un conjunto X se dice infinito si posee un subconjunto propio A tal que cada elemento de A se puede poner en correspondencia con cada elemento de X

Así nace el infinito actual o en acto que hoy, para el caso de los números naturales, representamos por N. Para el caso de la recta real, el objeto geométrico se identifica con el conjunto de los números reales, en este caso, la idea de Richard Dedekind no es aplicable, dado que el conjunto de los números reales no es contable o enumerable. Para ello fue necesario ampliar la definición de Richard Dedekind para incluir a los números reales. La nueva idea vino de la mano de George Cantor, quien estableció dos tipos de conjuntos infinitos: uno enumerable (puede ponerse en correspondencia con los números naturales) y otro no enumerable. Para el primer caso tenemos a los números naturales, para el segundo caso el mismo George Cantor demostró que el conjunto de los números reales no es enumerable. Bajo estos dos tipos de conjuntos estableció una nueva definición de conjunto infinito: un conjunto X es infinito si posee un subconjunto propio enumerable. Para el caso de los números reales tenemos al conjunto de los números racionales Q, subconjunto enumerable de los números reales. De acuerdo al sistema formal utilizado, esta definición puede ser demostrada, para ello simplemente se define un conjunto infinito, si no es finito.

Estas definiciones formales dan existencia a los conjuntos infinitos como un todo, en acto, como dirían los griegos. A pesar de la ruptura cognitiva, los matemáticos formalizan capturando propiedades esenciales, de esta forma dan existencia a objetos para operativizar ciertos propósitos dentro de un contexto matemático.

 


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

Harald Helfgott saltó a la fama mundial en 2012 cuando presentó a la comunidad matemática la demostración de la conjetura débil de Goldbach.

Fue contemporáneo de los grandes escritores estadounidenses del periodo entre los siglos XIX-XX, Frank Scott-Fitzgerald y John Steinbeck. Se identificaba con la política socialista.

El pensamiento lógico en el ser humano es una característica antropológica formada en el cerebro humano por miles de años de evolución.

La reapropiación del centro urbano por parte de las clases medias y altas, ocasionaba el sistemático desplazamiento hacia la periferia de las clases obreras.

Este libro es una selección de novelas cortas del autor inglés, en los que escribe sobre las costumbres de las familias clasemedieras, burguesas y “monárquico-feudales” de la Gran Bretaña de los años 20 a los 40 del Siglo XX.

En Taxi driver hay cierta crítica a los gobernantes de EE. UU.

Aumentan los casos de autismo y las causas no están del todo claras.

El Siglo XXI es de la comunicación matemática, espero que en el futuro se sumen una mayor cantidad de divulgadores y difusores del conocimiento matemático, así la contribución para nuestra sociedad será enorme, entre sus muchos beneficios, porque mejorará la educación ciudadana.

El marxismo de Gingzburg es incuestionable, aunque heterodoxo.

Uno de los conceptos que más ha apasionado a los seres humanos es la idea de infinito.

La FILIJ reunirá a 74 casas editoriales, autores, cuentacuentos, talleristas y artistas de diversas disciplinas.

La diversidad de la vida que nos rodea es el resultado de milenios de evolución impulsada por la mutación natural y la recombinación genética.

Carlo Ginzburg es un historiador italiano cuya presencia en el mundo se abrió paso en 1976 con su obra El queso y los gusanos.

Uno de los libros fundamentales en la obra del poeta veracruzano Rubén Bonifaz Nuño es Fuego de pobres (1961), su autor reconocerá que con este volumen “comenzaba ya el cambio; lo otro era personal; Fuego de pobres puede ser ya colectivo”.

Carlos Marx enseña que la anarquía de la producción es una de las principales leyes del sistema capitalista y conduce a la sobreproducción de mercancías hasta ocasionar una crisis económica.