Cargando, por favor espere...

La invención del infinito actual
Los objetos matemáticos, como constructos, se conciben en la mente humana; para ello se debe tener una idea precisa para formalizarlos y que luego emerjan sus propiedades.
Cargando...

Los objetos matemáticos, como constructos, se conciben en la mente humana; para ello se debe tener una idea precisa para formalizarlos y que luego emerjan sus propiedades. Existen ciertos objetos de enorme tamaño que escapan a nuestra mente limitada, por ejemplo, la totalidad de la recta real o la totalidad de los números naturales. Este problema existe desde que el ser humano empezó a pensar en los objetos de tamaño ilimitado. Fueron los griegos quienes empezaron a reflexionar profundamente, primero por la infinitud del Universo y luego por los objetos matemáticos de naturaleza ilimitada.

Desde la época griega hasta fines del Siglo XIX, lo único válido en el trabajo matemático es el llamado infinito potencial, es decir, aquel que nacía en el mismo acto operatorio y que intuitivamente afirmamos que puede seguirse realizando infinitamente; por ejemplo, en Grecia se entendía que los números naturales recobraban existencia en el acto operatorio de contar, hasta donde se quiera contar, y con la idea de que el acto de contar podía seguir más allá de lo necesitado. No era posible pensar en los números naturales como una totalidad, a esto inimaginable se le llamó infinito actual o en acto. Fue Aristóteles quien lo estableció así, como una característica esencial del trabajo matemático, trabajar potencialmente y no en acto.

Sin embargo, estos objetos inimaginables se sustituyen hoy por simples representaciones o notaciones; para el caso de los números naturales se escribe N para el caso de la recta real se escribe R, simplificando el concepto o idea de tales objetos, causando una ruptura cognitiva, no para los que lo aceptan sin mayor reflexión, sino para aquellos que poseen mayor agudeza mental.

Para dar existencia al infinito actual fue necesario capturar alguna propiedad esencial de tales objetos infinitos. El primero en darse cuenta de que algo esencial diferenciaba a los objetos finitos de los infinitos fue Galileo Galilei, quien mostró que para el caso de los números naturales (objeto infinito) poseía un subconjunto (los números pares), cuyos elementos se podían poner en correspondencia biunívoca con cada número natural (n ↔ 2n). Es decir, los números naturales poseen el mismo tamaño de un subconjunto de él. Ésta es la característica esencial que lo diferencia con los conjuntos finitos, propiedad que fue capturada por Richard Dedekind para definir por primera vez a los conjuntos infinitos: Un conjunto X se dice infinito si posee un subconjunto propio A tal que cada elemento de A se puede poner en correspondencia con cada elemento de X

Así nace el infinito actual o en acto que hoy, para el caso de los números naturales, representamos por N. Para el caso de la recta real, el objeto geométrico se identifica con el conjunto de los números reales, en este caso, la idea de Richard Dedekind no es aplicable, dado que el conjunto de los números reales no es contable o enumerable. Para ello fue necesario ampliar la definición de Richard Dedekind para incluir a los números reales. La nueva idea vino de la mano de George Cantor, quien estableció dos tipos de conjuntos infinitos: uno enumerable (puede ponerse en correspondencia con los números naturales) y otro no enumerable. Para el primer caso tenemos a los números naturales, para el segundo caso el mismo George Cantor demostró que el conjunto de los números reales no es enumerable. Bajo estos dos tipos de conjuntos estableció una nueva definición de conjunto infinito: un conjunto X es infinito si posee un subconjunto propio enumerable. Para el caso de los números reales tenemos al conjunto de los números racionales Q, subconjunto enumerable de los números reales. De acuerdo al sistema formal utilizado, esta definición puede ser demostrada, para ello simplemente se define un conjunto infinito, si no es finito.

Estas definiciones formales dan existencia a los conjuntos infinitos como un todo, en acto, como dirían los griegos. A pesar de la ruptura cognitiva, los matemáticos formalizan capturando propiedades esenciales, de esta forma dan existencia a objetos para operativizar ciertos propósitos dentro de un contexto matemático.

 


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

Poeta británico, nació el 31 de octubre de 1795 en Londres.

En 2015, el realizador ruso Andrey Vereshchagin filmó Mi segunda vida que es una historia de dos personas marcadas por la tragedia cuyas vidas, por alguna razón, se cruzan.

El Siglo XXI es de la comunicación matemática, espero que en el futuro se sumen una mayor cantidad de divulgadores y difusores del conocimiento matemático, así la contribución para nuestra sociedad será enorme, entre sus muchos beneficios, porque mejorará la educación ciudadana.

La ciencia como actividad fundamental de los seres humanos ha buscado profundizar en el conocimiento de la realidad que rodea al hombre.

El pensamiento lógico en el ser humano es una característica antropológica formada en el cerebro humano por miles de años de evolución.

Su inagotable sed de conocimiento la acercó por su cuenta a otros estudios como la astrología. Este conocimiento lo plasmó en su producción poética.

Destacada escritora y poetisa india nacida el 31 de marzo en Kerala.

La gentrificación en la cultura no sucede por sí misma, sino precisamente como una consecuencia inevitable de la gentrificación estudiada por la sociología.

La misma historia contada es en sí misma una crítica.

Felix Kleines uno de los matemáticos más creativos de la segunda mitad del Siglo XIX.

El cuatro de septiembre de 1947 fallecía en su exilio permanente en la Ciudad de México, el escritor, periodista y poeta Alfonso Guillén Zelaya.

La matemática es un producto cultural.

El estudio de Heráclito de Éfeso nos permite observar la huella que un pensador, por muy antiguo que sea, deja en el desarrollo de la filosofía posterior.

Es considerado el más prolífico de los matemáticos; su nombre figura en fórmulas, teoremas, números, integrales y constantes en distintas ramas de la matemática.

Harald Helfgott saltó a la fama mundial en 2012 cuando presentó a la comunidad matemática la demostración de la conjetura débil de Goldbach.