Cargando, por favor espere...

Entre la matemática y la transposición didáctica
En la primera mitad del Siglo XX aparece el fenómeno de la masificación de la educación matemática, periodo en que la matemática entra en la revolución del formalismo hilbertiano.
Cargando...

La matemática que hoy conocemos, es producto de un proceso evolutivo de cinco mil años. En sus inicios podemos considerarla como una protomatemática, el periodo en donde la matemática se establece muy parecido a lo que hoy llamamos matemática, nace hace dos mil 600 años en la antigua Grecia, con Tales de Mileto y Pitágoras; sin embargo, el primer sistema axiomático fue generado hace dos mil 300 años y ha sido un primer referente incluso para su enseñanza. Este primer sistema axiomático se ha mantenido vigente hasta el día de hoy en la enseñanza de la matemática, por su carácter intuitivo y avalado por la idea kantiana de que el conocimiento matemático es a priori, es decir, existe de manera natural independiente del ser humano. Sin embargo, a mediados del Siglo XIX nacen otros mundos geométricos (no intuitivos) y otras herramientas algebraicas que generan nuevos mundos de interpretación conceptual, que ponen en duda la tesis kantiana del aproísmo. Sumado a esto, nacen algunas paradojas matemáticas que no tenían explicación y que llegan a constituir discusiones filosófico-matemáticas de la naturaleza de los objetos matemáticos. 

En la primera mitad del Siglo XX aparece el fenómeno de la masificación de la educación matemática, periodo en que la matemática entra en la revolución del formalismo hilbertiano, que cambia el paradigma axiomático griego a un sistema formal de axiomas inventados por el ser humano, con el único requisito de que deben ser consistentes. Esta nueva epistemología le dio una libertad al matemático para generar nuevos mundos matemáticos e incorporar a las geometrías no euclidianas y otros objetos no intuitivos a su trabajo. Además, se produjeron sistemas axiomáticos al estilo hilbertiano que pretendían reformular toda la matemática conocida; en base de estos sistemas, se prescinde del contenido histórico filosófico del contenido matemático y también de la base intuitiva geométrica, tan habitual en el trabajo matemático anterior, quedando esto último como herramienta pedagógica hasta el día de hoy.

Por los años 70 nace la idea de la transposición didáctica, que es un proceso de recrear el conocimiento matemático y convertirlo en objeto de aprendizaje. Si bien es cierto que este proceso pedagógico-psicológico es importante en el proceso de asimilación del contenido matemático, también es cierto que se incurre en la imposibilidad de presentar una matemática real, así como lo ven los matemáticos de hoy en día. Por ejemplo, no es posible transponer conceptos básicos como los números naturales. Para un pedagogo, los números naturales son casi objetos concretos de conteo y no cuentan al cero como número natural. Sería muy complejo explicar a los niños o jóvenes que en realidad los números naturales son producto de aceptar el axioma del conjunto inductivo y demostrar que el conjunto inductivo más pequeño es llamado el conjunto de los números naturales –es la concepción actual de los números naturales–, en donde se incluye al cero como número natural, como aquel objeto que no es sucesor de otro, además se construye en base a la existencia del conjunto vacío. La concepción de conjunto, como idea de pluralidad contradice a la idea pedagógica de un conjunto sin elementos; hoy en día es posible demostrar la existencia de un conjunto sin elementos que llamamos vacío. Transponer esta idea matemática es muy compleja, porque no poseemos una definición de conjunto. Así podemos enumerar una serie de conceptos, desde los más básicos hasta los de nivel universitario, en que no es posible transponer la verdadera matemática; sólo es posible recrear el llamado “discurso matemática escolar” para fines pedagógicos y educativos, pero no para estudiar la verdadera matemática, que es compleja, producto de la evolución de miles de años y que hoy está rigurosamente fundamentada con base en la axiomática formal hilbertiana, que para poder comprender esto se requiere años de formación y que resulta quizás innecesaria para formar futuros ciudadanos, cuyo objetivo es disciplinar la mente humana, entender las herramientas matemáticas útiles para la toma de decisiones, entender el mundo que los rodea. Además de formarlos en principios y valores humanos y que el trabajo matemático tiene para aportar a la educación. 


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

El sijo es una forma poética tradicional originaria de Corea que se caracteriza por su enfoque en la expresión emocional y la captura de momentos fugaces.

Nakano tuvo una participación decisiva en la elaboración de la teoría conocida en Japón como “literatura proletaria”. En su obra, logró conciliar el lirismo y lo ideológico, siendo considerado la máxima representación de la poesía marxista en Japón.

La existencia de los conjuntos infinitos en matemática es obra de George Cantor, quien quedó maravillado cuando descubrió algunas rarezas que emanaban de este objeto, sin darse cuenta que estaba a punto de ingresar en un fascinante mundo abstracto.

Todavía queda una tarea, la más importante y significativa... fue precisamente la que Lenin señaló una vez tomado el Palacio de Invierno: “Ahora nos dedicaremos a edificar el socialismo”.

El capital ha convertido al deporte en mercancía en torno a la cual giran inmensos negocios mundiales; hoy en día, a pesar de ser un derecho constitucional, apenas un 39% de los mexicanos tienen acceso al deporte.

Este 2023 se conmemora el centenario del asesinato de Francisco Villa... y el tiempo desde su sacrificio no ha impedido que su presencia siga vigente. Hoy concita odios y agresiones en su contra y contra su memoria.

Dos amigos de Hegel requieren especial mención: Förster y Gans.

Hoy compartimos una selección de los poemas escritos desde la prisión política por Antonio Guerrero Rodríguez (Miami, 1958), uno de los Cinco Héroes Cubanos acusados de terrorismo y presos injustamente en EE. UU. durante muchos años.

Dalton subraya en todo momento los conceptos “construcción” y “lucha”.

El hallazgo sucedió en mayo de 2022 por el paleontólogo Damien Boschetto, quien observó en el borde de un acantilado derrumbado un hueso expuesto.

Fue un poeta, narrador, geólogo, maestro y promotor budista japonés. Su vida, así como varios de sus poemas e historias, han sido adaptados a la animación y su pueblo natal se ha convertido en un destino turístico literario.

La idea de aprender sin esfuerzo hace que el conocimiento adquirido en los menores sea volátil, superficial, en desmedro de su capacidad intelectual; y preocupa que cada año el nivel académico e intelectual de niños y jóvenes está decayendo a sitios alarmantes.

Mientras el trabajo matemático tiene reglas, axiomas, y su libertad está en función de estar gobernado por sistemas formales; en el trabajo filosófico...

Representan el primer florecimiento de la poesía pentasilábica en la tradición china. Se trata de la producción anónima de diversos literatos pertenecientes a la clase terrateniente media y baja.

El Siglo XVII fue el gran viraje en la exploración humana: varios reinos se adueñaron de los océanos Atlántico y Pacífico y Oceanía (Australia y Nueva Zelanda) y de buena parte de las regiones de India y China...