Cargando, por favor espere...

Matemáticas
Entre la matemática y la transposición didáctica
En la primera mitad del Siglo XX aparece el fenómeno de la masificación de la educación matemática, periodo en que la matemática entra en la revolución del formalismo hilbertiano.


La matemática que hoy conocemos, es producto de un proceso evolutivo de cinco mil años. En sus inicios podemos considerarla como una protomatemática, el periodo en donde la matemática se establece muy parecido a lo que hoy llamamos matemática, nace hace dos mil 600 años en la antigua Grecia, con Tales de Mileto y Pitágoras; sin embargo, el primer sistema axiomático fue generado hace dos mil 300 años y ha sido un primer referente incluso para su enseñanza. Este primer sistema axiomático se ha mantenido vigente hasta el día de hoy en la enseñanza de la matemática, por su carácter intuitivo y avalado por la idea kantiana de que el conocimiento matemático es a priori, es decir, existe de manera natural independiente del ser humano. Sin embargo, a mediados del Siglo XIX nacen otros mundos geométricos (no intuitivos) y otras herramientas algebraicas que generan nuevos mundos de interpretación conceptual, que ponen en duda la tesis kantiana del aproísmo. Sumado a esto, nacen algunas paradojas matemáticas que no tenían explicación y que llegan a constituir discusiones filosófico-matemáticas de la naturaleza de los objetos matemáticos. 

En la primera mitad del Siglo XX aparece el fenómeno de la masificación de la educación matemática, periodo en que la matemática entra en la revolución del formalismo hilbertiano, que cambia el paradigma axiomático griego a un sistema formal de axiomas inventados por el ser humano, con el único requisito de que deben ser consistentes. Esta nueva epistemología le dio una libertad al matemático para generar nuevos mundos matemáticos e incorporar a las geometrías no euclidianas y otros objetos no intuitivos a su trabajo. Además, se produjeron sistemas axiomáticos al estilo hilbertiano que pretendían reformular toda la matemática conocida; en base de estos sistemas, se prescinde del contenido histórico filosófico del contenido matemático y también de la base intuitiva geométrica, tan habitual en el trabajo matemático anterior, quedando esto último como herramienta pedagógica hasta el día de hoy.

Por los años 70 nace la idea de la transposición didáctica, que es un proceso de recrear el conocimiento matemático y convertirlo en objeto de aprendizaje. Si bien es cierto que este proceso pedagógico-psicológico es importante en el proceso de asimilación del contenido matemático, también es cierto que se incurre en la imposibilidad de presentar una matemática real, así como lo ven los matemáticos de hoy en día. Por ejemplo, no es posible transponer conceptos básicos como los números naturales. Para un pedagogo, los números naturales son casi objetos concretos de conteo y no cuentan al cero como número natural. Sería muy complejo explicar a los niños o jóvenes que en realidad los números naturales son producto de aceptar el axioma del conjunto inductivo y demostrar que el conjunto inductivo más pequeño es llamado el conjunto de los números naturales –es la concepción actual de los números naturales–, en donde se incluye al cero como número natural, como aquel objeto que no es sucesor de otro, además se construye en base a la existencia del conjunto vacío. La concepción de conjunto, como idea de pluralidad contradice a la idea pedagógica de un conjunto sin elementos; hoy en día es posible demostrar la existencia de un conjunto sin elementos que llamamos vacío. Transponer esta idea matemática es muy compleja, porque no poseemos una definición de conjunto. Así podemos enumerar una serie de conceptos, desde los más básicos hasta los de nivel universitario, en que no es posible transponer la verdadera matemática; sólo es posible recrear el llamado “discurso matemática escolar” para fines pedagógicos y educativos, pero no para estudiar la verdadera matemática, que es compleja, producto de la evolución de miles de años y que hoy está rigurosamente fundamentada con base en la axiomática formal hilbertiana, que para poder comprender esto se requiere años de formación y que resulta quizás innecesaria para formar futuros ciudadanos, cuyo objetivo es disciplinar la mente humana, entender las herramientas matemáticas útiles para la toma de decisiones, entender el mundo que los rodea. Además de formarlos en principios y valores humanos y que el trabajo matemático tiene para aportar a la educación. 


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

Entre la filosofía y la Matemática

Mientras el trabajo matemático tiene reglas, axiomas, y su libertad está en función de estar gobernado por sistemas formales; en el trabajo filosófico...

La trascendencia del deporte soviético (parte II)

La Espartaquiada de 1967, dedicada al 50º aniversario de la Revolución de Octubre, atrajo a un número récord de participantes, con más de 85 millones de deportistas y atletas aficionados, compitiendo para clasificar al evento principal.

El arte se descompuso

Hay que decir que la tesis de un arte contemporáneo descompuesto es sumamente escasa en las voces de los especialistas.

El tesoro de Moctezuma, de Carlos Isla (I de II)

El fortuito descubrimiento del llamado Tesoro de Moctezuma permitió al laborioso y honesto pescador de Boca del Río vivir una serie de peripecias a las que de otro modo jamás habría accedido.

¿Qué es la matemática filosófica? Parte II

Es posible crear una matemática filosófica desde el hacer de un matemático que sea realmente relevante y visionaria. Debe de ser una reflexión humanizante, pero a la vez esclarecedora del mundo de las ideas formales.

La conquista de la tierra (I de II)

Son historias de viajeros que por motivos de conquista económica, política, religiosa, curiosidad científica o espíritu de aventura visitaron otras regiones del mundo donde hallaron paisajes, edificaciones y grupos humanos diferentes a ellos.

Cambios en la constitución con la 4T: transformación sin cambio

La Constitución, cuyo aniversario festejamos cada cinco de febrero, es la de 1917, resultado de la Revolución Mexicana, lucha en la que miles de mexicanos perdieron la vida.

La farsa de la “izquierda” mexicana hoy

El verdadero futuro de la izquierda mexicana no se lo dará el juego electoral ni las luchas económicas por más que éstas beneficien a las grandes mayorías empobrecidas.

Las amistades de Hegel

Dos amigos de Hegel requieren especial mención: Förster y Gans.

La matemática no lo demuestra todo

Desde el inicio de la cuarta revolución matemática, en las primeras décadas del Siglo XX, el formalismo hilbertiano ha caracterizado el trabajo matemático hasta el día de hoy. Este paradigma histórico del formalismo se caracteriza por...

Imágenes en el posmodernismo

El mundo está saturado de imágenes y la realidad misma ha perdido significado. Cada individuo se enfoca en su imagen y en agradar a los demás; esto ha permitido que se deje de pensar en lo que ocurre alrededor, que se deje de valorar también lo que está delante.

El último mundo, de Christoph Ransmayr (II/II)

La presencia del Cota moderno en Tomis causa mucho menos extrañeza que la provocada por Ovidio dos mil años antes.

El lugar de la esperanza

El lugar de la esperanza es una cinta que plantea esa naturaleza de los espíritus fuertes, que nunca se dejan vencer por la adversidad.

El fin del arte

Se trata de una abstracción analítica en la que debemos separar tres elementos, y en la que la palabra arte y sus derivaciones se embrollan unas contra otras.

Belleza cruel, de Ángela Figuera Aymerich

Desde su exilio en México, León Felipe prologaba así el poemario "Belleza cruel", de Ángela Figuera, reconociendo la valentía, el coraje y la esperanza de los poetas españoles de la posguerra.