Cargando, por favor espere...
Desde el inicio de la cuarta revolución matemática, en las primeras décadas del Siglo XX, el formalismo hilbertiano ha caracterizado el trabajo matemático hasta el día de hoy. Este paradigma histórico del formalismo se caracteriza por:
La matemática es un conjunto de sistemas de axiomas, proposiciones, teoremas, dentro de un lenguaje lógico.
Los axiomas del sistema deben de estar libres de contradicciones.
Toda afirmación dentro de la teoría debe ser demostrada en un número finito de pasos.
El Programa de Hilbert establecía que los conjuntos serían los objetos básicos para iniciar una reconstrucción de toda la matemática, sujeto a un sistema axiomático inicial. Llegó a afirmar: “Nadie nos podrá expulsar del paraíso que para nosotros ha creado Cantor”.
Dentro de varios sistemas axiomáticos que se inventaron, el Sistema de Zermelo–Fraenkel, inventado por Ernst Zermelo (1871-1953) y Abraham Fraenkel (1891-1965), fue el más popular dentro de los matemáticos y el que los Bourbaki adoptaron para reconstruir la matemática de su época.
Según el Programa de Hilbert, este sistema estaba libre de contradicciones y, además, se debería probar la verdad o falsedad de cualquier enunciado matemático dentro del sistema en un número finito de pasos. Este optimismo de David Hilbert, fue tan grande que llegó a decir: Debemos saber, sabremos, es decir, estaba convencido de que todo lo conjeturado en los sistemas axiomáticos es decidible, lo que significa que podemos afirmar su verdad o falsedad. Sin embargo, fue rápidamente cuestionado en 1931 por un joven matemático austriaco llamado Kurt Gödel (1906-1978), quien en su tesis doctoral logró demostrar dos teoremas de incompletitud de la matemática. Estos teoremas establecen que en todo sistema axiomático (que por lo menos describa la aritmética de los números naturales) que esté libre de contradicciones existen enunciados cuya verdad o falsedad no será posible demostrar. Es decir, la matemática no lo demuestra todo, como ingenuamente se cree. Es probable que para poder demostrar que un enunciado sea verdadero o falso se tenga que incrementar el sistema axiomático inicial, pero en este nuevo sistema también existe la posibilidad de conjeturar nuevos enunciados cuya verdad o falsedad no sea posible demostrar. En concreto, Kurt Gödel, demostró que:
1.- Si el sistema axiomático no tiene contradicciones, entonces no es completo.
2.- La consistencia del sistema axiomático no puede demostrarse en el interior del sistema.
Este resultado, considerado el más importante del Siglo XX, echó abajo el optimismo de Hilbert, pero ha pasado desapercibido en el trabajo matemático hasta nuestros días debido al Programa Bourbakiano, que se caracterizó por ser extremadamente formalista y que masificó el conocimiento matemático a través de una serie de libros titulados Elementos de la Matemática, en donde inició un estudio riguroso desde los sistemas lógicos, el sistema axiomático de Zermelo- Fraenkel, la teoría de conjuntos, la topología, el álgebra abstracta y demás temas de la matemática contemporánea. Estos libros han sido la base fundamental en la elaboración de los libros-textos de los años 60-70, con los que se han formado los actuales matemáticos.
Existen conjeturas que han probado su independencia de los sistemas axiomáticos, por ejemplo, la Hipótesis del Continuo, formulada por George Cantor (1845-1918) en 1878, que dice: “No existe un conjunto que sea más grande que el conjunto de los números naturales, y a la vez más pequeño que el conjunto de números reales”. El mismo Kurt Gödel, demostró que no es posible demostrar su refutación dentro del sistema axiomático de la teoría de conjuntos. De otro lado, Paul Cohen (1934-2007) demostró que tampoco se puede demostrar su afirmación dentro del sistema formal.
Desde el punto de vista filosófico, se plantea algunas preguntas como: ¿en qué se basa el conocimiento matemático actual?; si existen enunciados matemáticos indecidibles, ¿dónde está el fundamento de aquellas proposiciones que se tienen como verdaderas? Se pone en debate la noción de verdad matemática en las demostraciones. La reflexión filosófica-matemática es muy relevante en este tema, constituyendo un elemento central para el futuro de la misma matemática. De lo único que estamos seguros es de que la matemática no lo demuestra todo; es muy probable que éste sea el inicio para superar el formalismo hilbertiano y transitar hacia una quinta revolución matemática.
El teorema más popular en matemática es probablemente el llamado Teorema de Pitágoras.
La vida de Mendel es un ejemplo clásico de perseverancia. Aunque al principio sus observaciones no tuvieron relevancia para la comunidad científica, biólogos y botánicos llegaron a sus mismas conclusiones décadas después de su muerte.
Euclides concentró todo el conocimiento matemático creado por los filósofos y matemáticos anteriores a él, entre ellos Eudoxo y Aristóteles.
Dotado de un extraordinario talento para estructurar conexiones, el alemán Alexander Grothendiek amplió las fronteras de la matemática contemporánea.
Alrededor de 20 especies de ciempiés podrían ser clave en el desarrollo de nuevos tratamientos médicos.
"Bard" tienen como propósito contribuir con la creatividad de los internautas, al tiempo en que les facilita la ejecución de diversas tareas.
Uno de los conceptos que más ha apasionado a los seres humanos es la idea de infinito.
Para muchos es normal que en la época de fin de año las temperaturas sean bajas. Esto se debe, en gran medida, a la inclinación de 23.5 grados del planeta con respecto a su eje, que va del polo norte al sur.
El oportunista luce como un “matasanos”, un doctor de ocasión que, viendo al paciente lamentarse por el dolor que le aqueja en una pierna, decide cortársela. Solo tenía un golpe, pero nadie podrá decirle al doctor que no logró curar el dolor.
La ciencia, para mejores resultados, requiere constancia, equipamiento, infraestructura y recursos suficientes para realizar investigación de calidad.
El pan y la sal comparten una historia íntimamente relacionada desde su descubrimiento y uso en la alimentación; la cultura los tiene como emblemas relevantes en la vida cotidiana de los pueblos más antiguos.
Además de generar beneficios importantes para los suelos, la materia orgánica contribuye al amortiguamiento de agentes contaminantes. Sin embargo, las actividades humanas han provocado que en el 42% de nuestro territorio los suelos estén casi inservibles.
La historia de esa constante comenzó desde que el hombre tuvo necesidad de construir pirámides con bases circulares y cilíndricas, como lo demuestran los papiros de Ahmes y Moscú.
La intención es lograr un lente de material blando que logre un acercamiento, en un primer prototipo, de 32 por ciento con respecto a la visualización normal.
Ante el descenso de temperaturas, los seres humanos se las han ingeniado para no pasar frío y continuar con sus actividades normales, pero qué pasa con los animales, ¿cómo sobreviven a las temperaturas bajas extremas? Te cuento.
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador