Cargando, por favor espere...
Cuando George Cantor concibió al ω (conjunto de los números naturales) como un todo (infinito en acto), y luego ω+1= {0,1,2,3,…,ω} = ω U {ω}; ω+2= ω+1 U {ω+1} y así sucesivamente, se convirtió en una obsesión que lo llevó a una profunda depresión, puesto que no solo pasaba por un proceso de duelo (muerte de su hijo) sino también por las profundas ideas religiosas que tenía, se preguntaba constantemente: ¿cómo es posible que pueda entender lo que está en la mente de Dios?, por lo tanto, creía que el mismo Dios le revelaba todas estas deducciones lógicas a las que llegó.
Superada la depresión, volvió a trabajar en matemática de los números ordinales, en su publicación de 1897, Contribuciones a la creación de una teoría de transfinitos, estableció por primera vez otra concepción de los números naturales, esta vez como un cuantificador del número de elementos de un conjunto, para ello define el concepto de cardinalidad de un conjunto, por ejemplo, la cardinalidad de ω lo llamó Card(ω)= N0 (se lee: álf sub cero), y encontró una aritmética sorprendente, por ejemplo, Card(ω +1) = Card (ω+2) =......= Card (ω+n) = N0, incluso N0 + N0 = N0, que llamó aritmética transfinita.
George Cantor también denominó que todo conjunto que tenga el mismo número de elementos de ω sea llamado enumerable y en 1874 demostró que el conjunto de los números racionales Q también es enumerable, mediante una novedosa técnica llamada de la diagonal. En 1891, demuestra que el conjunto de los números reales R no es enumerable, una de las demostraciones más bellas de la matemática, por su simpleza e ingeniosa forma de establecer que, si fuera numerable, se incurriría en un error. Hasta ese momento existían dos tipos de infinito, uno que es numerable (equivalente a la cardinalidad de los naturales) y otro que no lo es (equivalente a la cardinalidad de los números reales). La pregunta natural que George Cantor se formuló es: ¿será posible encontrar algún conjunto A tal que Card (N)< Card (A) < Card (R), esta conjetura ha pasado a la historia de la Matemática como la Hipótesis del Continuo, problema no resuelto hasta el día de hoy. Continuo también se le llama a la cardinalidad de los números reales. Por primera vez se establece ciertos tamaños en los conjuntos infinitos.
En este intento de George Cantor de encontrar este conjunto de cardinalidad intermedia, se sumergió en mundos abstractos sorprendentes. Por ejemplo, ¿quién es la Card (ω, ω+1, ω+2, ...)? Los llamó cardinales de segundo tipo, que denotó por N1. Con el objetivo de obtener la cardinalidad del continuo, dedujo lo siguiente: en vista que todo número real se puede escribir en base binaria, entonces conjetura que 2N0 es la cardinalidad de los reales y por lo tanto podría ser que c = 2 N0 = N1. Existe una generalización de la Hipótesis del Continuo, al construir 2, ¿será posible 2 N1 = N2 y así sucesivamente con N3, etc?
La Hipótesis de Continuo fue el primer problema planteado en 1900 por David Hilbert para ser resuelto por los matemáticos del Siglo XX, estamos en el Siglo XXI sigue sin resolver.
Actualmente la matemática se concibe como un conjunto de sistemas formales, aunque Kurt Gödel (1906 – 1978) ha demostrado que no existe sistema formal que pueda dar cuenta de todas las conjeturas que se puedan plantear (dentro del sistema) –incompletitud de la matemática–. Considerando la consistencia del sistema formal de Zermelo–Fraenkel, que sustenta la matemática actual, en 1940, Kurt Gödel ha demostrado que para cualquier sistema formal es imposible demostrar que 2 N0 = N1 es falsa. Sin embargo, en 1963, Paul Cohen (1934 -2003) demostró que tampoco se puede probar que 2 N0 = N1 es verdadera. Estas afirmaciones son profundos resultados matemáticos, que conllevan a la reflexión filosófica, sobre el futuro del formalismo de Hilbert.
Escribir es, en un escenario de rapidez y polarización, un acto revolucionario, además, contribuye "a la memoria, la concentración o la asociación de ideas", sostuvo el profesor de Psicología.
Si la incidencia de plagas y enfermedades no acaba con los bosques, sí reduce significativamente su actividad fotosintética. En los tiempos que corren esto contribuye al calentamiento global.
Así como un deportista ama su actividad, lo encuentra entretenido, le gusta y goza, de igual manera un matemático, con sus objetos de estudio, ama intrínsecamente la disciplina, muchas veces sin esperar utilidad.
Las buenas noticias disparadas desde Palacio Nacional, que pintan a un México próspero y “feliz”, parecen no corresponderse con las estadísticas del INEGI.
El científico Alejandro Macías alertó que en cuanto entre a México la variante JN.1, denominada Pirola, lo hará con tal fuerza que podrá haber saturación de hospitales y de camas de terapia intensiva.
La Federación Internacional de Robótica proyecta que seguirá creciendo la demanda de robots industriales con la instalación de 600 mil robots nuevos en todo el mundo para el año 2024.
El papel de la ciencia en el desarrollo social se piensa en sus aportaciones a la tecnología para elevar la productividad, generar riqueza, crecimiento económico y progreso.
Si los campesinos quieren mejorar sus condiciones se debe insistir en la tecnificación del campo mexicano, en la menor dependencia de países extranjeros, en la tecnificación agrícola y...
En nuestro país, el uso indiscriminado de fertilizantes químicos en la actividad agrícola se ha vuelto muy importante debido al empobrecimiento de los suelos.
Como parte de un experimento, por primera vez la NASA transmitió a la Tierra un video de “ultra alta definición” de 15 segundos de un gatito llamado Taters.
Las muertes por sobredosis de fentanilo alcanzaron otro récord en EE. UU. En sólo un año (2021-2022) casi 109 mil personas perdieron la vida por consumir esta sustancia.
El matemático fue el primero en usar las funciones de variable compleja en la solución de problemas aritméticos, iniciando una fructífera área de investigación llamada: Teoría Analítica de Números.
Cuántas veces hemos tenido la duda de si tomar un medicamento alopático o un té para curar algún malestar o disminuir el síntoma de una enfermedad.
Este extraordinario hombre fue capaz de abordar problemas relevantes de la matemática de su época y hacer aportes trascendentes, abriendo nuevas áreas de investigación que hasta el día de hoy se siguen desarrollando.
Crowdstrike sufrió una interrupción global que afectó a aeropuertos, bancos y otras empresas a nivel mundial.
Chimalhuacán, entre los municipios con mayor inseguridad; en redes tunden a alcaldesa
Pemex no paga, pero Slim invierte: Carso seguirá en el negocio petrolero
Encuesta revela las alcaldías con más inseguridad de la CDMX
Cofece revela pacto de bancos para fijar comisiones
Detienen a exalcalde de Apulco, Yuriel “N”, electo por Movimiento Ciudadano
PAN denuncia a Adán Augusto por supuestos vínculos con el narco
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador