Cargando, por favor espere...

Sobre el libro Geometría Plana y del espacio de Aurelio Baldor
El primer libro escrito por el profesor Baldor, fue su Álgebra, publicada en 1941, adoptado como texto oficial en Cuba.
Cargando...

Si se investigara cuál es el libro de matemática escolar más famoso en Latinoamérica, sin lugar a dudas los libros del profesor cubano Aurelio Baldor (1906-1978) estarían entre los primeros. Podemos afirmar que la figura del profesor Baldor es más famosa que la de la mayoría de matemáticos investigadores, no porque haya demostrado alguna conjetura importante o tenga una gran cantidad de papers, sino porque sus libros han sido útiles para diversas generaciones de distintos países.

El primer libro escrito por el profesor Baldor, fue su Álgebra, publicada en 1941, adoptado como texto oficial en Cuba. Luego, en la misma década, aparecieron los otros dos textos, bajo una misma línea pedagógica innovadora para la época. Fue uno de los primeros libros en usar colores para resaltar ideas; también introdujo pequeñas notas históricas. Los libros de matemática escolar de la década de los 40 del siglo pasado carecían de una presentación en color y eran redactados como papers, importando poco el nivel al que iban dirigidos. Leer y estudiar un libro de matemática en esa época representaba un reto intelectual para un joven estándar.

Los libros del profesor Baldor vinieron a revolucionar no solamente la presentación material del libro de matemática –lo que elevaría su costo–, sino también iniciaron un estilo pedagógico nunca antes visto. Este estilo fue seguido por la didáctica precientífica, como un modelo para realizar clases de matemática. La formación pedagógica de los maestros de las décadas posteriores siguió ese estilo y estructura que, si bien realizaba una explicación entendible de los procesos, en muchos casos propiciaba la mecanización, además de establecer cierto tipo de problemas matemáticos resolubles por procesos mecánicos.

En lo que sigue no me referiré al contenido pedagógico, sino a algunos errores que pueden establecerse en uno de sus libros: Geometría Plana y del Espacio.

La Geometría de Baldor intenta seguir la estructura de los Elementos de Euclides, y hace un resumen histórico de los principales matemáticos griegos que contribuyeron a la disciplina, además de la geometría no euclidiana. A mi juicio, comete algunos errores: por ejemplo, define un Axioma al estilo Euclides, es decir: dice que es una proposición tan sencilla y evidente que se admite sin demostración. Hoy día un axioma es un enunciado que se establece como regla de juego inicial, no necesariamente evidente (ejemplo: por un punto exterior a una recta pasan infinitas rectas paralelas) lo importante es que sean consistentes con el conjunto de axiomas que se establezcan. Aunque afirma que el punto no se define, no dice por qué, sólo da una idea (común en el discurso matemático escolar). Igual sucede con la recta geométrica. Da una serie de definiciones imprecisas de superficie, plano. La noción de ángulo lo confunde con el interior de un ángulo, no distingue el ángulo con la medida del ángulo, es decir, para Baldor < ABC = m (< ABC), causando confusiones escolares. Igual sucede con los triángulos y demás figuras geométricas, que confunde con su interior. Se destacan enunciados sintéticos en los teoremas de la geometría de espacio, pero sigue confundiendo la frontera con el interior del poliedro.

En trigonometría, usa la razón (cociente) de las medidas de un triángulo rectángulo y los llama “funciones trigonométricas”, es un error conceptual que en muchos casos se ve hasta en la universidad. Usa el sistema sexagesimal y no los radianes, que sería lo más correcto cuando se trata de funciones trigonométricas. Son errores que poco ayudan a entender el cálculo diferencial e integral.

Se podría hacer un análisis más detallado de los otros libros del profesor Baldor, en donde encontraremos errores, quizás sutiles desde el punto de vista práctico de las técnicas de la matemática, pero que generan confusiones en el nivel universitario. Por éstas y otras razones, a muchos matemáticos profesionales no les gustan los libros del profesor Baldor.

Todo lo anterior no le quita el mérito de haber sido el primer libro que introdujo mejoras pedagógicas, además de que muchos profesores, ingenieros y también matemáticos se formaron con estos libros en su etapa escolar. 


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

Un grupo de brillantes matemáticos franceses, autodenominado Bourbaki desarrolló, desde las primeras décadas del Siglo XX, un programa fundacional de la matemática con gran influencia en el trabajo matemático contemporáneo.

La existencia de los conjuntos infinitos en matemática es obra de George Cantor, quien quedó maravillado cuando descubrió algunas rarezas que emanaban de este objeto, sin darse cuenta que estaba a punto de ingresar en un fascinante mundo abstracto.

Paul Erdós colaboró con tantos matemáticos que dio origen al famoso “número de Erdós”.

Se cumplió un año de la incursión de militantes de la organización Hamás desde la Franja de Gaza a Israel que, según las autoridades de este país, dejó mil 159 muertos y 251 personas que se llevaron secuestradas.

El tránsito hacia una matemática filosófica exige iniciar una quinta revolución matemática; para ello, el estudio de la historia desde el hacer de un matemático es fundamental.

Fourier consideraba que toda función continua puede representarse como una serie infinita de senos y cosenos.

El Siglo XXI es de la comunicación matemática, espero que en el futuro se sumen una mayor cantidad de divulgadores y difusores del conocimiento matemático, así la contribución para nuestra sociedad será enorme, entre sus muchos beneficios, porque mejorará la educación ciudadana.

Félix Klein y su Programa Erlangen

La tenacidad en su trabajo le acompañó hasta una edad muy avanzada.

El desarrollo de la investigación matemática ha sido tan espectacular, que abarcar todo el conocimiento actual de la matemática se ha vuelto imposible para cualquier ser humano.

El pensamiento lógico en el ser humano es una característica antropológica formada en el cerebro humano por miles de años de evolución.

El cerebro no aprende matemática si no se enfrenta a algo difícil, o por lo menos desafiante, que rete su imaginación y saque todo su potencial.

Albert Einstein es el físico más importante del Siglo XX, sus ideas profundas han revolucionado las bases de la física newtoniana, dejando estupefactos a los grandes físicos de su época.

La teoría de la medida es una parte de la matemática contemporánea.

Los objetos matemáticos, como constructos, se conciben en la mente humana; para ello se debe tener una idea precisa para formalizarlos y que luego emerjan sus propiedades.