Cargando, por favor espere...

Tlaixaxiliztli
¿Por qué el conjunto vacío es un conjunto?
Los conjuntos han estado presentes desde nuestros primeros años, como consecuencia del paradigma formalista de D. Hilbert y la influencia del grupo Bourbaki en la enseñanza de la matemática desde mediados del Siglo XX.


Los conjuntos han estado presentes en nuestra etapa escolar desde nuestros primeros años, como consecuencia del paradigma formalista de D. Hilbert y la influencia del grupo Bourbaki en la enseñanza de la matemática desde mediados del Siglo XX. El discurso matemático escolar entrega solo una idea de conjunto, asociándolo al concepto de pluralidad, causando una ruptura cognitiva en los jóvenes cuando se le dice que el vacío es también un conjunto matemático, puesto que al no tener elementos, evidentemente no hay concepción de pluralidad. Si le preguntamos a un matemático profesional ¿por qué el conjunto vacío es un conjunto?, es muy probable que tampoco tenga una respuesta convincente. Para responder a esta conjetura, se tendría que definir qué es un conjunto y luego demostrar que evidentemente el objeto matemático que no posee elementos cumple con la definición de conjunto dada; sin embargo, resulta que el objeto matemático conjunto no es definible dentro de los parámetros formales, por lo tanto, no tenemos respuesta.

El hecho de concebir objetos matemáticos no definibles fue idea de D. Hilbert, quien consideró nuestras limitantes cognitivas y de lenguaje. Esto le permitió construir un primer sistema formal en la geometría que subsanara los errores cometidos por Euclides en su obra Elementos, al intentar definir objetos matemáticos como punto, recta y plano. El optimismo de D. Hilbert fue grande; pensó que toda la matemática debía construirse por objetos básicos no definibles gobernados por axiomas (afirmaciones matemáticas que se admiten sin definición), inventando lo que se llama sistemas formales y que constituye el aspecto central de la escuela filosófica de la matemática denominada formalista y que impera hasta el día de hoy.

Aunque no se tenga una definición de conjunto, a principio del Siglo XX se inventaron sistemas formales, como el de Zermelo- Francken, que concibieron axiomas básicos para la existencia de los conjuntos, con el propósito de reconstruir toda la matemática desde los sistemas numéricos hacia adelante. Bajo esta axiomática formal es posible demostrar fehacientemente que el objeto matemático sin elementos cumple con los axiomas de existencia de conjuntos, por lo tanto, es un conjunto.

Desde la demostración formal de que el objeto sin elementos es un conjunto, se inicia la transposición didáctica, un discurso matemático escolar de pluralidad para los conjuntos, para hacerlo compatible con los principales axiomas de existencia de conjuntos, sin darse cuenta que este discurso matemático escolar entra en conflicto con el llamado “conjunto vacío”. Desde el ámbito matemático hilbertiano no hay respuesta a la pregunta ¿qué es un conjunto?, que es una pregunta filosófica, más que científica.

En el ámbito filosófico hay más preguntas y de mayor profundidad, como ¿qué es un objeto matemático?; ¿existe o no?; si existe, ¿dónde se encuentra; ¿qué naturaleza tiene?; si no existe, ¿por qué la matemática da cuenta de la realidad? etc. Aún más: ¿qué significa pertenecer a un objeto matemático?; nos encontramos con una relación entre objetos que tampoco el matemático define.

No es posible responder a la conjetura ontológica ¿qué es un conjunto? o en general ¿qué es un objeto matemático?, no existen respuestas convincentes dentro de las escuelas clásicas de la filosofía de la matemática (platonismo, logicismo, intuicionismo, formalismo). En las formas de existencia de una realidad es fundamental dilucidar para ver si los conjuntos existen o no. Consideramos que hay existencias materiales y también no materiales, como por ejemplo, las ondas electromagnéticas, pero también existen las invenciones humanas, por ejemplo, el dinero, la política, las ciudades, etc. El Ingenioso Hidalgo Don Quijote de La Mancha es otra invención humana, existe el medio material donde fue escrito (libro), sin embargo, la interpretación conceptual de la obra solo se encuentra en la mente humana. Es importante mencionar que sin el medio material (libro), probablemente esta obra ya no existiría (por las limitaciones humanas de recordar las cosas), además, sin la mente humana el libro solo sería un objeto como también lo es una piedra. Dentro de este tipo de existencia están los conjuntos, no tienen existencia material, es por ello que no necesariamente poseen la propiedad de pluralidad.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Noticia anterior
Top Gun: Maverick
Noticia siguiente
Sociedad Anónima 1076

Notas relacionadas

hom.jpg

Los primeros vestigios del conocimiento matemático de especies de Homo sapiens, capaces de establecer marcas en los huesos de animales para recordar hechos importantes, datan de hace 30 mil años.

ciencia.jpg

En lo que va de 2019 México ha registrado 74 mil 277 casos de dengue, cifra que lo ubica en el cuarto lugar de América Latina, solo después de Brasil (un millón 958 mil 31), Nicaragua (94 mil 513) y Colombia (84 mil 644).

Matemáticas, Borges y Los crímenes de Oxford

En la novela Los crímenes de Oxford, su autor, el doctor en Matemáticas y escritor argentino Guillermo Martínez, es un ejemplo de convergencia de estas dos áreas aparentemente disímiles: matemáticas y literatura.

mano.jpg

Tal como los procesadores de texto cambiaron la forma es la que se escribía, ahora estamos ante una nueva herramienta que, si se usa de manera correcta, revolucionaría la forma en la que escribimos.

Colmena alcanzó 50 por ciento de éxito

A pesar de que el cohete no podrá aterrizar en la luna, el Instituto de la UNAM consideró que sí se han alcanzado los propósitos de la misión Colmena, toda vez que han podido articular conocimientos tecnocientíficos y formación académica.

romeo.jpg

El maestro de hoy, no todos desde luego, pero sí la mayoría, ya no enseña a su alumno a razonar y analizar.

von.jpg

Von Neumann fue considerado como superdotado, ya que desde los seis años ya sabía dividir, hablar griego antiguo, francés, alemán y latín, y a sus ocho años ya dominaba el cálculo diferencial e integral.

niels.jpg

La vida de Henrik fue marcada por la pobreza, la fatalidad y la incomprensión; aun así, su mentalidad matemática, lo llevó a mostrar su genialidad, con ideas originales, mostrando caminos nuevos a los matemáticos de su época.

ciencia.jpg

Los ejemplos más conocidos son los invernaderos, pero no son los únicos, existen también las casas sombra, los microtúneles, los túneles y otras estructuras utilizadas dependiendo del cultivo y la región climática.

China abre centro de entrenamiento para robots humanoides

Se trata de una fábrica de generación de datos, cuyo propósito es ofrecer estos datos a las empresas que desarrollan modelos de Inteligencia Artificial .

Científicos mexicanos enfrentan falta de presupuesto

"Durante esta administración empezamos muy mal desde que se decía que los científicos éramos la mafia. Todos los apoyos, hubo una reducción clara", afirmó el investigador Alfredo Herrera Estrella.

romeo.jpg

La irracionalidad ayuda al hombre a comprender la continuidad y la discontinuidad de la materia.

phil.jpg

La lucha por el control de los datos personales se traduce en la posibilidad de poder económico, político e ideológico. De manera permanente somos vigilados por empresas y funcionarios.

vacas.jpg

En nuestros días, los científicos discuten con gran preocupación el posible aumento, en las futuras generaciones, de enfermedades o males derivados del efecto ambiental catastrófico más grande después de la época de las postguerras.

China enviará un explorador robótico al polo sur lunar en 2026

Este explorador, pionero en su tipo, saltará de áreas iluminadas por el sol a cráteres en sombra para realizar análisis detallados.