Cargando, por favor espere...

La enseñanza de las geometrías griegas en las escuelas (II de II)
El maestro de hoy, no todos desde luego, pero sí la mayoría, ya no enseña a su alumno a razonar y analizar.
Cargando...

La geometría ha enseñado al hombre a distinguir el espacio donde habita, a detectar la estructura geométrica de la naturaleza y del universo en la que vive, a distinguir una distancia de otra, a diferenciar el grosor de los árboles y, finalmente, a comprender que la forma es el primer nivel de conocimiento de un fenómeno, toda vez que es lo primero que capta. Después de este nivel, el hombre comienza a distinguir la cantidad de la forma, a medir, a calcular volúmenes y áreas de diferentes objetos y sólidos presentes en la naturaleza; es decir, empieza a relacionar cantidades; esto significa que ha alcanzado un nivel alto de abstracción. A este grado de abstracción es al que debe aspirarse en las escuelas. 

Sin embargo, en las escuelas de nivel básico (al menos en México), se ha dejado de practicar la abstracción.  El maestro de hoy, no todos desde luego, pero sí la mayoría, ya no enseña a su alumno a razonar y analizar. En las escuelas mexicanas se extraña el debate y el razonamiento matemático que realizaron los científicos antiguos. Me refiero a los debates que se generaron respecto a las aportaciones científicas de Tales de Mileto (630– 540 a.C.), Anaximandro de Mileto (610–547 a.C.), Pitágoras de Samos (569–475 a.C.), Aristeo de Crotona (Siglo V a.C., discípulo de Pitágoras), Teodoro de Cirene (465–398 a. C.), Teeteto (417–369 a.C.), Eudoxo de Cnido (390–337 a.C.), Aristóteles de Estagira (384 –322 a. C.), Menecmo (380–320 a.C.), Aristarco de Samos (310–230 a.C.), Euclides de Alejandría (325–265 a.C.), Arquímedes de Siracusa (287–212 a.C.), Erastótenes de Cirene (276–194 a.C.), Apolonio de Perga (262–190 a.C.), Hiparco de Nicea (190–120 a.C.), Menelao de Alejandría (70–140 d.C.), Claudio Ptolomeo (100–170 d.C.), Pappus de Alejandría (290–350 d.C.), Hipatia de Alejandría (350-370 – 415 d.C.), entre otros grandes científicos que, con sus aportaciones, han guiado al hombre actual a comprender su realidad y a actuar sobre ella.  

Ahí es donde radica la utilidad e importancia de la matemática como ciencia; por eso hoy se hace más necesario que el maestro y sus alumnos estudien las obras originales de cada uno de los científicos arriba mencionados. Cito, a manera de ejemplo, el debate suscitado entre Aristóteles y Jenócrates y los partidarios de éste, acerca de las líneas indivisibles. Aristóteles se adelantó a su t|iempo en demostrar a Jenócrates que las líneas siempre son divisibles y pueden dividirse en partes infinitas, sin importar su longitud, sea ésta pequeña o grande. La respuesta del sabio de Estagira sobre la existencia de líneas indivisibles fue la siguiente: “no es preciso que lo que admite divisiones finitas no pueda ser ‘pequeño’ y ‘poco’. Y es que llamamos ‘pequeño’ al espacio, a la magnitud y, en general, a lo continuo –incluso en los casos en los que conviene el calificativo ‘poco’– y sin embargo decimos que tienen infinitas divisiones”. (Aristóteles, Sobre las líneas indivisibles y mecánica, pág. 26, segundo párrafo). En el siguiente párrafo de la misma página, Aristóteles continúa: “si hay líneas indivisibles en la longitud compuesta, ‘pequeño’ se dice en relación con esas indivisibles, y en ellas hay infinitos puntos. En tanto que la línea, admite una división por un punto. Por tanto, cualquier línea que no fuera indivisible tendría infinitas divisiones. Algunas de éstas son pequeñas. Y las razones son infinitas y es posible cortar cualquier recta que no sea indivisible según la razón dada”.

En aquellos tiempos no fue fácil llegar a la conclusión que Aristóteles había alcanzado, porque la matemática no estaba formalizada todavía, pero se intuía ya el método deductivo y analítico del estagirita. Tuvieron que transcurrir más dos mil 200 años para que los matemáticos alemanes Richard Dedekin (1831–1916) y Georg Cantor (1845–1918) demostraran la afirmación de Aristóteles: “que entre dos números reales distintos, siempre es posible encontrar infinitos números reales, es decir, infinitos números racionales e infinitos números irracionales”. Es decir que la recta, la recta real, es divisible y se puede partir en infinitos puntos.

Esta lección es la que nos deja la historia y la filosofía de las matemáticas y, sobre todo, el método analítico de nuestros antepasados científicos materialistas. Este método materialista es el que urge recuperar en las escuelas.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

Astrónomos encontraron señal de vida en lo alto de la atmósfera de Venus: indicios que puede haber extraños microbios viviendo en las nubes cargadas de ácido sulfúrico.

Tiene como objetivo ampliar la compresión del universo y contará con uno de los espejos más avanzados jamás creados.

Sostener que el arte es un reflejo de la sociedad, así a secas, distorsiona y mutila el papel de la actividad artística y de los artistas. La práctica artística es, en realidad...

A bordo del cohete Centaur, de la empresa United Launch Alliance (ULA), viajan cinco robots diseñados por la UNAM, mismos que podrán desplazarse de manera autónoma por el suelo de la luna.

Creer que las verdades matemáticas y objetos matemáticos tienen existencia independiente de la mente humana no tiene fundamento; desde Pitágoras hasta algunos matemáticos más contemporáneos creen en esta independencia.

El volcán Popocatépetl se formó hace 23 mil años sobre los restos de otros volcanes. Desde entonces presenta actividad de manera intermitente, Tras estar inactivo 67 años, "despertó" en 1994.

En México hay aproximadamente dos mil especies de abejas nativas. A diferencia de las melíferas, que viven en colonias (colmenas) con su reina y obreras, la mayoría de las nativas son solitarias.

El pasado tres de febrero, otro golpe brutal a la naturaleza tuvo lugar en Ohio, cuando un tren con sustancias peligrosas se descarriló y liberó gases venenosos; 14 de sus 150 vagones contenían 100 mil litros de cloruro de vinilo.

“En México no se está instrumentando una política real para salvar la vida y proteger a los mexicanos de los desastres naturales", afirmó el Doctor en Física, Romeo Pérez Ortiz.

¿Cuál es el carácter distintivo de la dialéctica? Pongamos el caso de la guerra, ¿es nociva o es perjudicial? Desde el punto de vista de la dialéctica, es indispensable saber qué guerra se está planteando. Aquí la verdad siempre es concreta.

Para una circunferencia no es difícil notar que la forma de la figura siempre surge y resurge siendo la misma

El método obtenido por el discípulo de Platón dio nacimiento formal al cálculo infinitesimal e influyó significativamente en los matemáticos posteriores a Eudoxo.

En las ideas de Anaximandro no estaban presentes ideas esenciales de la ciencia moderna.

Gracias al estudio y observación del mundo, sabemos con precisión que la naturaleza está llena de comportamientos homosexuales, desde los organismos más pequeños hasta los grandes mamíferos.

El concepto tiempo asocia a los tres componentes estructurales del universo: materia, movimiento y espacio.