Cargando, por favor espere...
La geometría ha enseñado al hombre a distinguir el espacio donde habita, a detectar la estructura geométrica de la naturaleza y del universo en la que vive, a distinguir una distancia de otra, a diferenciar el grosor de los árboles y, finalmente, a comprender que la forma es el primer nivel de conocimiento de un fenómeno, toda vez que es lo primero que capta. Después de este nivel, el hombre comienza a distinguir la cantidad de la forma, a medir, a calcular volúmenes y áreas de diferentes objetos y sólidos presentes en la naturaleza; es decir, empieza a relacionar cantidades; esto significa que ha alcanzado un nivel alto de abstracción. A este grado de abstracción es al que debe aspirarse en las escuelas.
Sin embargo, en las escuelas de nivel básico (al menos en México), se ha dejado de practicar la abstracción. El maestro de hoy, no todos desde luego, pero sí la mayoría, ya no enseña a su alumno a razonar y analizar. En las escuelas mexicanas se extraña el debate y el razonamiento matemático que realizaron los científicos antiguos. Me refiero a los debates que se generaron respecto a las aportaciones científicas de Tales de Mileto (630– 540 a.C.), Anaximandro de Mileto (610–547 a.C.), Pitágoras de Samos (569–475 a.C.), Aristeo de Crotona (Siglo V a.C., discípulo de Pitágoras), Teodoro de Cirene (465–398 a. C.), Teeteto (417–369 a.C.), Eudoxo de Cnido (390–337 a.C.), Aristóteles de Estagira (384 –322 a. C.), Menecmo (380–320 a.C.), Aristarco de Samos (310–230 a.C.), Euclides de Alejandría (325–265 a.C.), Arquímedes de Siracusa (287–212 a.C.), Erastótenes de Cirene (276–194 a.C.), Apolonio de Perga (262–190 a.C.), Hiparco de Nicea (190–120 a.C.), Menelao de Alejandría (70–140 d.C.), Claudio Ptolomeo (100–170 d.C.), Pappus de Alejandría (290–350 d.C.), Hipatia de Alejandría (350-370 – 415 d.C.), entre otros grandes científicos que, con sus aportaciones, han guiado al hombre actual a comprender su realidad y a actuar sobre ella.
Ahí es donde radica la utilidad e importancia de la matemática como ciencia; por eso hoy se hace más necesario que el maestro y sus alumnos estudien las obras originales de cada uno de los científicos arriba mencionados. Cito, a manera de ejemplo, el debate suscitado entre Aristóteles y Jenócrates y los partidarios de éste, acerca de las líneas indivisibles. Aristóteles se adelantó a su t|iempo en demostrar a Jenócrates que las líneas siempre son divisibles y pueden dividirse en partes infinitas, sin importar su longitud, sea ésta pequeña o grande. La respuesta del sabio de Estagira sobre la existencia de líneas indivisibles fue la siguiente: “no es preciso que lo que admite divisiones finitas no pueda ser ‘pequeño’ y ‘poco’. Y es que llamamos ‘pequeño’ al espacio, a la magnitud y, en general, a lo continuo –incluso en los casos en los que conviene el calificativo ‘poco’– y sin embargo decimos que tienen infinitas divisiones”. (Aristóteles, Sobre las líneas indivisibles y mecánica, pág. 26, segundo párrafo). En el siguiente párrafo de la misma página, Aristóteles continúa: “si hay líneas indivisibles en la longitud compuesta, ‘pequeño’ se dice en relación con esas indivisibles, y en ellas hay infinitos puntos. En tanto que la línea, admite una división por un punto. Por tanto, cualquier línea que no fuera indivisible tendría infinitas divisiones. Algunas de éstas son pequeñas. Y las razones son infinitas y es posible cortar cualquier recta que no sea indivisible según la razón dada”.
En aquellos tiempos no fue fácil llegar a la conclusión que Aristóteles había alcanzado, porque la matemática no estaba formalizada todavía, pero se intuía ya el método deductivo y analítico del estagirita. Tuvieron que transcurrir más dos mil 200 años para que los matemáticos alemanes Richard Dedekin (1831–1916) y Georg Cantor (1845–1918) demostraran la afirmación de Aristóteles: “que entre dos números reales distintos, siempre es posible encontrar infinitos números reales, es decir, infinitos números racionales e infinitos números irracionales”. Es decir que la recta, la recta real, es divisible y se puede partir en infinitos puntos.
Esta lección es la que nos deja la historia y la filosofía de las matemáticas y, sobre todo, el método analítico de nuestros antepasados científicos materialistas. Este método materialista es el que urge recuperar en las escuelas.
No dormir provoca que el cerebro elimine una cantidad significativa de neuronas, así como una perdida significativa de conexiones sinápticas; lo peor, la recuperación del sueño sería incapaz de revertir el daño.
La proteína es un macronutriente indispensable para el crecimiento y el mantenimiento de órganos y músculos en el cuerpo de los animales.
Hablar de la existencia de la realidad ha sido un problema filosófico muy discutido. En este contexto, qué tipo de realidad es un objeto matemático, es una pregunta que abordaremos en este artículo.
La superación de la que habla Marx no niega por completo lo anteriormente construido por la tradición, sino que lo integra y, en algunos casos, lo supone. Aquí lo explico.
El famoso Axioma de elección juega un poco con la intuición humana, ya que demuestra que todo conjunto puede ser bien ordenado, aunque no se muestra cuál es ese orden.
Si te has identificado con las personas que aman el terror, te contaré una historia de hechos reales que te pondrá los pelos de punta. Ésta es una historia sobre seres vivos que vuelven zombis a sus víctimas.
Las edificaciones no están diseñadas para enfrentar el "peligro silencioso" que las acecha desde el subsuelo, advierten ingenieros de la Universidad Northwestern (EE.UU.)
Mirar directamente al Sol durante un eclipse puede causar daños irreversibles en la retina, incluso sin sentir dolor; como sucedió en 1991.
Para Pitágoras, el conocimiento no se agota con lo empírico, porque su esencia está en el segundo, se encuentra donde está el número, concebido como una relación abstracta (no de cálculo).
Otras mujeres matemáticas también fueron importantes en la antigua Grecia; por ejemplo Aspacia de Alejandría (470-410 a. C.), pareja de Pericles.
Si la incidencia de plagas y enfermedades no acaba con los bosques, sí reduce significativamente su actividad fotosintética. En los tiempos que corren esto contribuye al calentamiento global.
Por ello, ahora como antes, es de vital importancia que los científicos dejen de ser una élite que atesora el conocimiento, y que devuelvan éste al pueblo. La ciencia se nutre en el pueblo.
George Cantor sufrió una una profunda depresión por la muerte de su hijo, pero también por las ideas religiosas que tenía: Dios le revelaba todas las deducciones lógicas a las que llegó.
Crowdstrike sufrió una interrupción global que afectó a aeropuertos, bancos y otras empresas a nivel mundial.
Los trabajos que pueden contribuir a un incremento en el riesgo de sufrir demencia destacan los que están relacionados con funciones mecánicas o procesos automatizados.
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.