Cargando, por favor espere...

Tlaixaxiliztli
La enseñanza de las geometrías griegas en las escuelas (II de II)
El maestro de hoy, no todos desde luego, pero sí la mayoría, ya no enseña a su alumno a razonar y analizar.


La geometría ha enseñado al hombre a distinguir el espacio donde habita, a detectar la estructura geométrica de la naturaleza y del universo en la que vive, a distinguir una distancia de otra, a diferenciar el grosor de los árboles y, finalmente, a comprender que la forma es el primer nivel de conocimiento de un fenómeno, toda vez que es lo primero que capta. Después de este nivel, el hombre comienza a distinguir la cantidad de la forma, a medir, a calcular volúmenes y áreas de diferentes objetos y sólidos presentes en la naturaleza; es decir, empieza a relacionar cantidades; esto significa que ha alcanzado un nivel alto de abstracción. A este grado de abstracción es al que debe aspirarse en las escuelas. 

Sin embargo, en las escuelas de nivel básico (al menos en México), se ha dejado de practicar la abstracción.  El maestro de hoy, no todos desde luego, pero sí la mayoría, ya no enseña a su alumno a razonar y analizar. En las escuelas mexicanas se extraña el debate y el razonamiento matemático que realizaron los científicos antiguos. Me refiero a los debates que se generaron respecto a las aportaciones científicas de Tales de Mileto (630– 540 a.C.), Anaximandro de Mileto (610–547 a.C.), Pitágoras de Samos (569–475 a.C.), Aristeo de Crotona (Siglo V a.C., discípulo de Pitágoras), Teodoro de Cirene (465–398 a. C.), Teeteto (417–369 a.C.), Eudoxo de Cnido (390–337 a.C.), Aristóteles de Estagira (384 –322 a. C.), Menecmo (380–320 a.C.), Aristarco de Samos (310–230 a.C.), Euclides de Alejandría (325–265 a.C.), Arquímedes de Siracusa (287–212 a.C.), Erastótenes de Cirene (276–194 a.C.), Apolonio de Perga (262–190 a.C.), Hiparco de Nicea (190–120 a.C.), Menelao de Alejandría (70–140 d.C.), Claudio Ptolomeo (100–170 d.C.), Pappus de Alejandría (290–350 d.C.), Hipatia de Alejandría (350-370 – 415 d.C.), entre otros grandes científicos que, con sus aportaciones, han guiado al hombre actual a comprender su realidad y a actuar sobre ella.  

Ahí es donde radica la utilidad e importancia de la matemática como ciencia; por eso hoy se hace más necesario que el maestro y sus alumnos estudien las obras originales de cada uno de los científicos arriba mencionados. Cito, a manera de ejemplo, el debate suscitado entre Aristóteles y Jenócrates y los partidarios de éste, acerca de las líneas indivisibles. Aristóteles se adelantó a su t|iempo en demostrar a Jenócrates que las líneas siempre son divisibles y pueden dividirse en partes infinitas, sin importar su longitud, sea ésta pequeña o grande. La respuesta del sabio de Estagira sobre la existencia de líneas indivisibles fue la siguiente: “no es preciso que lo que admite divisiones finitas no pueda ser ‘pequeño’ y ‘poco’. Y es que llamamos ‘pequeño’ al espacio, a la magnitud y, en general, a lo continuo –incluso en los casos en los que conviene el calificativo ‘poco’– y sin embargo decimos que tienen infinitas divisiones”. (Aristóteles, Sobre las líneas indivisibles y mecánica, pág. 26, segundo párrafo). En el siguiente párrafo de la misma página, Aristóteles continúa: “si hay líneas indivisibles en la longitud compuesta, ‘pequeño’ se dice en relación con esas indivisibles, y en ellas hay infinitos puntos. En tanto que la línea, admite una división por un punto. Por tanto, cualquier línea que no fuera indivisible tendría infinitas divisiones. Algunas de éstas son pequeñas. Y las razones son infinitas y es posible cortar cualquier recta que no sea indivisible según la razón dada”.

En aquellos tiempos no fue fácil llegar a la conclusión que Aristóteles había alcanzado, porque la matemática no estaba formalizada todavía, pero se intuía ya el método deductivo y analítico del estagirita. Tuvieron que transcurrir más dos mil 200 años para que los matemáticos alemanes Richard Dedekin (1831–1916) y Georg Cantor (1845–1918) demostraran la afirmación de Aristóteles: “que entre dos números reales distintos, siempre es posible encontrar infinitos números reales, es decir, infinitos números racionales e infinitos números irracionales”. Es decir que la recta, la recta real, es divisible y se puede partir en infinitos puntos.

Esta lección es la que nos deja la historia y la filosofía de las matemáticas y, sobre todo, el método analítico de nuestros antepasados científicos materialistas. Este método materialista es el que urge recuperar en las escuelas.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

La forma en que pensamos y sentimos está determinada por la interacción entre el cuerpo y el cerebro.

Cuando se aborda el tema de la Inteligencia artificial (IA), a diferencia de algunas décadas atrás en el tiempo, ya no se aborda como ciencia-ficción; ahora la IA es una realidad.

La empresa mexicana ThumbSat diseñó y construyó los satélites en tamaño reducido (de 100 gramos cada uno aproximadamente).

La compañía tecnológica informó a medios especializados que los datos comprometidos incluyen información general, como nombres de usuarios y empresas, pero no contraseñas.

Los resultados mostraron un incremento de 38.3 a 42.6 por ciento los pacientes con afecciones intestinales y cerebrales en 2017 y 2023 respectivamente.

En su Segunda Carta de Relación dice que “la dicha provincia es redonda y está toda cercada de muy altas y ásperas sierras, y lo llano de ella tendrá en torno hasta setenta leguas”.

El vicepresidente brasileño, Geraldo Alckmin, visitará México a finales de agosto, acompañado por ministros y empresarios.

El estudio muestra que las diferencias en la superficie de la Luna están relacionadas con su interior y ha creado el mapa más preciso de su gravedad hasta ahora.

A lo largo de la historia, las dos guerras mundiales han dado lugar a los mayores ecocidios.

El estudio sugiere que los avances científicos están diseñados para monitorear a personas, lo que podría beneficiar a la industria de la vigilancia.

Enjambres de terremotos se incrementan a finales del verano, tras la filtración del agua de deshielo, y disminuyen en primavera.

El mini robot imita con precisión la anatomía de un insecto real.

El desarrollo de la sociedad ha engendrado diversas clases sociales.

Los investigadores calificaron este caso como “una de las mayores filtraciones de datos de la historia”.

Genera hasta 50 escenarios posibles con una antelación de hasta 15 días.